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We show that the system of equations left over in the DL has regular solutions featuring

a Vainshtein-like recovery of solutions of General Relativity (GR). Hence, the singularities

found to arise integrating the full nonlinear system of equations are not present in the

DL, despite the fact those singularities are usually thought to be due to a negative energy

mode also seen in this limit. Moreover, we show that the scaling conjectured by Vainshtein

at small radius is only a limiting case in an infinite family of non singular solutions each

showing a Vainshtein recovery of GR solutions below the Vainshtein radius but a different

common scaling at small distances. This new scaling is shown to be associated with a zero

mode of the nonlinearities left over in the DL. We also show that, in the DL, this scaling

allows for a recovery of GR solutions even for potentials where the original Vainshtein

mechanism is not working. Our results imply either that the DL misses some important

features of nonlinear massive gravities or that important features of the solutions of the

full nonlinear theory have been overlooked. They could also have interesting outcomes for

the DGP model and related proposals.
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1 Introduction

The possibility that gravity is modified at very large, i.e. cosmological, distances is moti-

vated not only by the wish to find alternative explanations to the cosmic acceleration (or

even to replace dark matter [1]), but also because it enables to separate what does and does

not depend on the dynamics of gravity at cosmological scales in the standard cosmological

model. Unfortunately, to obtain such modifications in a consistent way is very difficult.

One simple possibility is to try to give a mass to the graviton, and theories of ”massive grav-

ity” have attracted recently some attention (see [2] for a review). Among those theories,

the simplest one are what can be called nonlinear Pauli-Fierz theories, i.e. theories made

by nonlinearly completing the unique consistent quadratic theory for a Lorentz invariant

massive spin 2, the Pauli-Fierz theory [3]. Such massive gravities share some properties

with more complicated constructions, such as the Dvali-Gabadadze-Porrati (DGP in the

following) model [4]. The latter model has also the advantage to produce a late time accel-

eration of the Universe without the need for a non vanishing cosmological constant [5] (see

however [6–8]). One of the crucial issues to be answered by such models is how to recover

metrics sufficiently close to the ones obtained in Einstein’s General Relativity (GR) to pass

standard tests of the latter theory, while at the same time having significant deviations from

GR at large distances. A first major obstacle is related to the so-called van Dam-Veltman-

Zakharov (vDVZ) discontinuity [9], i.e. the fact that the quadratic Pauli-Fierz theory does

not have linearized GR as a limit when the mass of the graviton is sent to zero. Soon after

the discovery of the vDVZ discontinuity, it was realized that the discontinuity might in

fact disappear in nonlinear Pauli-Fierz theories [10]. This because a careful examination of

static spherically symmetric solutions of those theories by A. Vainshtein showed that the

solutions of the linearized nonlinear Pauli-Fierz theories (i.e. those of simple Pauli Fierz

theory) were only valid at distances larger than a distance scale, the Vainshtein radius RV ,

which goes to infinity when the mass of the graviton is sent to zero. On the other hand,

Vainshtein showed that there exists a well behaved (as the mass of the graviton is sent

to zero) expansion valid at distances smaller than RV , this expansion being defined as an

expansion around the Schwarzschild solution of GR. What Vainshtein did not show is the

possibility to join together those two expansions as expansions of one single non singular

underlying solution [11]. In fact, in the context of nonlinear massive gravity, such a joining

seems to be problematic [12, 13] even though it might work for other models where the

same problem appears, such as the DGP model [14, 15]. Indeed Damour et al. found

in ref. [12] by numerical integration of the equations of motion, that singularities always

appear (at least for the kind of mass term considered there) in static spherically symmetric

solutions of the kind considered by Vainshtein. A common wisdom is that those singular-

ities could be related to the instabilities known to exist in nonlinear Pauli-Fierz theories

and discovered by Boulware and Deser [11]. Those instabilities are also believed [16, 17] to

be related to the higher derivative operators appearing in a powerful effective description

of the scalar sector of massive gravity proposed by Arkani-Hamed et al. in analogy with

the Stückelberg ”trick” of gauge theories [18] introducing ”Goldstone modes” and taking

a ”Decoupling Limit” (DL) in the theory. This limit is aimed at focusing on the strongest

– 2 –
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self-interactions of the model which are seen to arise generically in the scalar sector [18]. It

has in particular the property to keep the Vainshtein radius fixed and allows to understand

easily the Vainshtein mechanism as well as the scaling of the dominant terms for spheri-

cally symmetric solutions in a range of distances between the Schwarzschild radius and the

Vainshtein radius [16–18]. Our goal in this paper is to investigate the success or failure

of the Vainshtein mechanism in this DL. It will shed light on the possible links between

the failure of the Vainshtein mechanism in nonlinear massive gravities (as discovered by

Damour et al. [12]) on the one hand, the Boulware Deser instability [11] and the Goldstone

picture (as introduced in ref. [18]) on the other hand. Clarifying those links matters not

only for a better understanding of nonlinear massive gravities (theories which are probably

of limited interest as far as their application to the real world is concerned) but also for

the one of more sophisticated models, such as the DGP gravity, degravitation [19] or the

recently proposed Galileon [20]. For example in DGP gravity, studies of the Vainshtein

recovery of GR is mostly based on a perturbation theory approach [14, 15] and it matters

to know if it persists if one takes into account as completely as possible the full nonlinear

structure of the theory (see e.g. [8, 21]).

The paper is organized as follows. In the next section (section 2), we introduce with

some details nonlinear Pauli-Fierz theories we will be interested in, the Goldstone descrip-

tion of the latter, and the associated Decoupling Limit. This section, mostly introductory,

will nonetheless also contain some new material concerning the Goldstone picture and the

DL. We then (section 3) introduce appropriate ansätze for describing static spherically

symmetric solutions of the theories introduced in the first section, as well as describe with

some details the Vainshtein mechanism. Next (section 4) we turn to study static spheri-

cally symmetric solutions in the DL. We first show how to obtain the DL with the ansatz

considered, then we study solutions of the DL equations of motion. Our main results ap-

pear there. We find that despite the higher derivative nature of the operator appearing

in the DL, there exist non singular solutions of the vacuum equations of motion in the

DL which have the right large distance behaviour. We also show that, depending on the

potential, this large distance behaviour (at distances larger than the Vainshtein radius)

when expressed in term of a power serie expansion, might not be enough to select a unique

solution at small distance. This is in fact a blessing since it leaves more room for matching

a source at small distance. We also investigate sources and show how our non singular

vacuum solutions can be extended inside. In addition, we show that the small distance

behaviour conjectured by Vainshtein is not the only possible one. Indeed we find a more

generic scaling associated with a zero mode of the nonlinear part of the DL equations of

motion which also allows the recovery of GR at small distance. Interestingly, it allows a

working Vainshtein-like mechanism for potentials where it was not believed to work. Our

investigations (which results are summarized in section 5) also show that the instabilities

seen by Damour et al. [12] in the full nonlinear case (i.e. not the DL), and hence the failure

of the Vainshtein mechanism, are not, in contrast to a widespread belief, related to the

presence of a ghost (or higher derivatives in the DL picture) in the model.

– 3 –
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2 Massive gravity and the Goldstone picture

2.1 Massive gravity and bigravity theories

It is well known that the only consistent Lorentz invariant mass term for a spin two field

hAB over a Minkowski space-time with canonical metric ηAB takes the Pauli-Fierz form

given by [3]

Sm = −1

8
m2M2

P

∫

d4xhABhCD

(

ηACηBD − ηABηCD
)

(2.1)

where the kinetic part of the action is obtained by expanding the Einstein-Hilbert action

at quadratic order in hAB over the flat metric ηAB. In the equation above m is the graviton

mass and MP the reduced Planck mass, given by

M−2
P = 8πGN , (2.2)

in term of the Newton constant GN . Wishing to give a nonlinear generalization of the

Pauli-Fierz theory we have just defined, it seems natural to consider theories with two

metrics, gµν and fµν on a four dimensional space-time,1 where one of the two metrics, say

gµν , will be dynamical, while the other, fµν , will not.2 Hence, we will consider the action

given by

S =

∫

d4x
√−g

(

M2
P

2
Rg + Lg

)

+ Sint[f, g], (2.3)

In the above action, Lg denotes a generic matter Lagrangian with a minimal coupling to the

metric g (and not to the metric f), and Sint[f, g] is an interaction term with non derivative

couplings between the two metrics. There is much freedom in the choice of this interaction

term. For example, the following two possibilities have been considered respectively by

Boulware and Deser (BD) in ref. [11] and by Arkani-Hamed et al. (AGS) in ref. [18],

S
(2)
int = −1

8
m2M2

P

∫

d4x
√

−f HµνHστ (fµσf ντ − fµνfστ ) (2.4)

S
(3)
int = −1

8
m2M2

P

∫

d4x
√−g HµνHστ (gµσgντ − gµνgστ ) , (2.5)

where fµν and gµν denotes respectively the inverse of the metric fµν and gµν , and Hµν is

defined by

Hµν = gµν − fµν .

Following the notations of Damour et al.,Damour:2002ws, these interaction terms are in

the form

S
(a)
int = −1

8
m2M2

P

∫

d4xV(a)(g, f) ≡ −1

8
m2M2

P

∫

d4x
√−gV (a)(g−1f) (2.6)

1For reasons that will appear in the following, we use both capital latin letters and greak letters to

indicate space-time indices.
2Theories of this kind have been considered in the past in the context of strong interactions [22]. Note

that this is not the only possible way to define a nonlinear completion of Pauli-Fierz theory, see e.g. the

recent proposal [23].
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with V(a)(g, f) ≡ √−g V (a)(g−1f) a suitable ”potential” density. In this work we will

consider theories where the potential V(a) will not be necessarily one of the two above

forms (2.4)–(2.5),3 but will be chosen such that (i) it is a scalar density under diffeomor-

phisms (common to the two metrics) and (ii) that when one expands g to second order

around the canonical Minkowski metric ηAB as gAB = ηAB + hAB and let f assumes the

canonical Minkowski form ηAB, the potential at quadratic order for hAB takes the Pauli-

Fierz form (2.1). Note however that many choices can be made with those two same

properties. The theories considered will then be invariant under common diffeomorphisms

which transforms the metric as

gµν(x) = ∂µx
′σ(x)∂νx

′τ (x)g′στ

(

x′(x)
)

,

fµν(x) = ∂µx
′σ(x)∂νx

′τ (x)f ′στ

(

x′(x)
)

,
(2.7)

and under which the quantity V (a) transforms as a scalar. It is then possible to show that it

only depends on the matrix g−1f [24], hence the notation in equation (2.6). The equations

of motion, derived from action (2.3), read

M2
PGµν =

(

Tµν + T g
µν

)

, (2.8)

where Gµν denotes the Einstein tensor computed with the metric g, Tµν is the energy

momentum tensor of matter fields, and T g
µν is the effective energy momentum tensor coming

from the variation with respect to the metric g of the interaction term Sint. It depends

non derivatively on both metrics f and g and is defined as usual as

T g
µν(x) = − 2√−g

δ

δgµν(x)
Sint(f, g). (2.9)

A simple, but non trivial, consequence of equations (2.8) is obtained by taking a g-covariant

derivative ∇ of both sides of the equations; one gets, using the Bianchi identities and the

conservation of the matter energy momentum tensor, the constraint

∇µT g
µν = 0 (2.10)

which the effective energy momentum tensor should obey.

2.2 The Goldstone picture

The gauge invariance (2.7) can be used to write the background flat metric f in various

coordinate systems. Starting from a given gauge, with coordinate XA, and the f metric

in the form of fAB(X), it might be desirable to change the gauge, but keep the change of

coordinate explicit in the f metric. Namely, the action is the same as action (2.3), but

with fµν(x) now given by the expression

fµν(x) = ∂µX
A(x)∂νX

B(x)fAB (X(x)) , (2.11)

while g is kept as gµν(x). The quantities XA, which then appear explicitly in the action

of the theory, can be considered as a set of four new dynamical scalar fields, which are

3We keep the numbering of the potentials (2.4)–(2.5) of ref. [24].
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analogous to the Stückelberg field used to restore gauge invariance in the Proca Lagrangian.

Indeed, under a subsequent coordinate change x→ x′(x), ∂µX
A(x) transforms as

∂µX
A(x) = ∂µx

′σ∂σX
A(x′),

and hence the quantity fµν(x) transforms as a covariant tensor of rank 2, as it should,

while fAB is left unchanged by this coordinate transformation. With this in mind and

the analogy with the Stückelberg procedure and Goldstone equivalence theorem, the initial

gauge, where g and f assume the form gAB and fAB is usually called a ”unitary gauge”,4

i.e. one where the Stückelberg fields XA are gauged away. Note that the metric fµν in a

non unitary gauge can also be thought as the pullback, via the ”link field” XA(x), on the

space-time manifold m4, with coordinates xµ, of the metric fAB living in an other abstract

manifold M4 with coordinates XA. Usually, the unitary gauge is chosen such that in this

gauge the metric fAB takes the canonical Minkowski form diag(−1, 1, 1, 1) ≡ ηAB . In the

non unitary gauge, the action (2.3) is one for a theory with gµν and XA as dynamical fields.

Obviously, the equations of motion for gµν lead to the same equations as in (2.8) where

fµν is given in the form (2.11). Let us briefly turn to the equations of motion for XA. The

link fields XA only enter the action through the metric fµν given by equation (2.11), hence

the variation of the action with respect to XA, δSint(f, g), is given by

δSint(f, g) = −1

8
m2M2

P

∫

d4x

(

δ

δfµν(x)
V(a)(f, g)

)

δfµν ,

where δfµν is the variation of fµν under XA(x) → XA(x) + δXA(x). It is easily seen that

the latter is given by (see appendix A)

δfµν = ∂µδx
σfσν + ∂νδx

σfµσ + δxσ∂σfµν , (2.12)

where δxµ(x) is defined by

δxµ(x) = δXA(x)∂Ax
µ(X(x)) (2.13)

and xµ(X) denote the inverse mapping of XA(x). Hence, the variation of f takes the form

of the Lie derivative Lδxfµν of f along the quantities δxµ considered as a vector field on

the space-time manifold. However, the interaction term Sint(f, g) has been constructed

to be a scalar under coordinates changes, hence in particular under those of the form

xµ → xµ + δxµ, with δxµ defined as above. So one has
∫

d4x

[(

δ

δfµν(x)
V(a)(f, g)

)

Lδxfµν +

(

δ

δgµν(x)
V(a)(f, g)

)

Lδxgµν

]

= 0.

Using this, and the definition (2.9), we get the following expression for the variation

δSint(f, g) of the interaction term Sint(f, g)

δSint(f, g) =

∫

d4x
√−g

(

∇µT
µν
g

)

(∂Ax
σ) gσν δX

A(x). (2.14)

4In the following, we will always use indices with capital latin letters from the beginning of the alphabet

A, B, C, . . . to denote quantities written in a unitary gauge, like the coordinates XA and metrics fAB and

gAB , and greak letters from the middle of the alphabet, µ, ν, . . . to designate quantities in a non unitary

gauge.
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Hence we see that the equation of motion of XA are equivalent to the Bianchi identi-

ties (2.10) provided that the mapping XA(x) is invertible. Note that above, we have lifted

and lowered indices with gµν . This will be the case in all the following except for what

concerns the metric fµν , the indices of which are moved with f itself. Note also that in

the above derivation we have not used the fact that fAB is the canonical Minkowski metric

ηAB and hence, it also holds when it is not the case.

2.3 Strong coupling and decoupling limit in the Goldstone picture

The authors of ref. [18] have further developed the above mentioned analogy between XA

and Stückelberg fields. Indeed, following [18], one can do a ”Goldstone boson” expansion

of the action (2.3) around a unitary gauge. Indeed, considering some background solution

for gµν (defined as g0
µν) and XA(x) defined (the metric fAB being kept fixed) as

XA
0 (x) ≡ δA

µ x
µ,

ref. [18] introduces the ”pion” fields πA as

XA(x) = XA
0 (x) + πA(x), (2.15)

and further does a ”scalar-vector” decomposition of the πA in the form

πA(x) = fAB (AB + ∂Bφ) . (2.16)

Note that this notation is a bit problematic if one is interested in the structure of the theory

beyond linearized equations of motion. Indeed, first neither the πA defined as above, nor φ

and AB are tensors on the Manifold M4 (and one does not see the need for the metric fAB

above). Second, given the definition (2.15), it is natural to assume that φ is a function of

xµ (not of the XA) and hence one does not see why it is differentiated above with respect

to XB . In fact, if one takes the definition (2.16) literally and write ∂Bφ = ∂Bx
µ∂µφ, one

sees that ∂Bx
µ is expressible formally as a serie of πA (using (2.15)) and hence also of φ.

This will generate terms at nonlinear order which will be different from the ones one gets

using the naive expression ∂Bφ = δµ
B∂µφ. The same will be true if one considers metrics

fAB with non trivial dependence in the coordinates XA (so that this later problem does

not arise when fAB is taken to be the canonical flat metric, but will e.g. if one chooses

to parametrize Minkowski space-time in a non trivial way). To avoid those difficulties, we

will write, instead of (2.16) (and in fact this seems to be what is done implicitly in ref. [18]

to deal with nonlinear order)

πA(x) = δA
µ (Aµ(x) + ηµν∂νφ) . (2.17)

If one inserts the decomposition (2.17) into action (2.3), and expands around flat space-

time writing gµν = ηµν + hµν , we obtain an action for the dynamical fields hµν(x), Aµ(x)

and φ(x). Since Aµ(x) and φ(x) only enter in the metric fµν , via expression (2.11), the only

term in action (2.3) which depends on Aµ(x) and φ(x) is the interaction term Sint[f, g],

– 7 –
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and one has from (2.11) (where no term has been neglected in the expression below)

Hµν = hµν − ∂µAν − ∂νAµ − 2∂µ∂νφ

−∂µAσ∂νA
σ − ∂µ∂σφ ∂ν∂

σφ

−∂νA
σ∂µ∂σφ− ∂µA

σ∂ν∂σφ. (2.18)

Inserting this expression into S[f, g], and keeping the lowest order in hµν(x), Aµ(x) and

φ(x), one obtains the following first non trivial terms (upon integration by part)

S =
M2

P

8

∫

d4x
{

2hµν∂µ∂νh− 2hµν∂ν∂σh
σ
µ + hµν�hµν − h�h

+m2
[

h2 − hµνh
µν − FµνF

µν − 4(h∂A − hµν∂
µAν) − 4(h�φ− hµν∂

µ∂νφ)
]

+
4

M2
P

Tµνh
µν
}

where h ≡ hµνη
µν , ∂A ≡ ∂µA

µ, Tµν is the matter stress-energy tensor, and indices are

moved up and down with the metric ηµν . The peculiarity of the above expression is that

while Aµ acquires a standard kinetic term, φ does only get one via a mixing with hµν [18],

this being entirely due to the structure of the Pauli-Fierz mass term (2.1). A may to demix

φ and hµν is to do the shift [18]

hµν = ĥµν −m2ηµνφ.

The quadratic interaction action then becomes

Sint =
M2

Pm
2

8

∫

d4x
{

ĥ2 − ĥµν ĥ
µν − FµνF

µν − 4(ĥ∂A− ĥµν∂
µAν)

+6m2
[

φ(� + 2m2)φ− ĥφ+ 2φ∂A
] }

.

The interactions between φ, A and ĥµν can be canceled by adding an appropriate gauge

fixing to the action (see [25]). Following again [18], we can obtain canonically normalized

fields φ̃, Ã and h̃µν by defining

h̃µν = MP ĥµν ,

Ãµ = MPmA
µ,

φ̃ = MPm
2φ.

(2.19)

Doing so, and expanding the action in φ̃, Ã and h̃µν one sees using (2.18) that φ̃ has in

general cubic self interactions suppressed by the energy scale

Λ =
(

m4MP

)1/5
. (2.20)

When those interactions are present,5 they are the strongest interactions among the fields

φ̃, Ã and h̃µν in the limit where m ≪ MP , besides quadratic, cubic and quartic non

5An appropriate choice of the interaction term Sinf [f, g] can remove cubic (and others) self interactions

of φ̃ [18].
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derivative interactions.6 Indeed, using the expansion (2.18), it is easy to see that those

interactions, coming from the interaction term (2.6), scale as

Λ4−k1−2k2−3k3−k4
k1,k2,k3,k4

h̃k1

(

∂Ã
)k2

(

∂∂φ̃
)k3

φ̃k4 (2.21)

where k1, k2, k3 and k4 are integers and the expressions Λk1,k2,k3,k4 are given by

Λk1,k2,k3,k4 = Λ

(

MP

m

)

4k1+3k2+2k3+4k4−6
5(k1+2k2+3k3+k4−4)

. (2.22)

Whenever k1 + 2k2 + 3k3 + k4 = 4 (which can only happen for k1 + k4 = 4, k2 = 0, k3 = 0

or for k1 + k4 = 2, k2 = 1 and k3 = 0), the coefficient in front of h̃k1(∂Ã)k2(∂∂φ̃)k3φ̃k4

in eq. (2.21) is equal to the dimensionless expressions m2/M2
P or m/MP and the corre-

sponding interactions include in particular quartic non derivative couplings between φ̃ and

h̃. In all other cases, Λk1,k2,k3,k4 has the dimension of an energy. It is equal to m for

quadratic interactions and m2/MP for cubic non derivative interactions. Hence, besides

quadratic, cubic and quartic non derivative interactions, it is easily seen that the strongest

interaction among the canonically normalized fields is the cubic derivative self interaction

of φ̃ suppressed by the scale Λ = Λ0,0,3,0. All the other interactions are suppressed by a

scale larger or equal to Λ0,0,4,0, with Λ0,0,4,0 = M
1/4
P m3/4 [16, 18, 25]. In other words the

exponent in the right hand side of the above formula (2.22) is bounded below by 1/20 as

soon as {k1, k2, k3, k4} 6= {0, 0, 3, 0} (not considering the above mentionned non derivative

quadratic, cubic and quartic interactions). Hence, for m ≪ MP the scale Λ4 is stricly

larger that Λ, while the non derivative cubic and quartic interactions are much smaller

than the quadratic mass terms (for small expectation values of the fields). This indicates

that there is a regime where the theory considered, and hence also its solutions, is well

approximated7 by retaining only the quadratic action and the cubic self interaction of φ̃,

as noted in particular in ref. [16]. This regime can be extended to arbitrarily high energy

scale8 (or arbitrarily small distances) by choosing a sufficiently large ratio MP /m, as can

be seen from the relation (2.22). In fact, one can take a decoupling limit, that suppresses

all the interactions but the cubic φ̃ derivative self interaction. This limit is defined as

MP → ∞,

m→ 0,

Λ ∼ constant,

Tµν/MP ∼ constant.

(2.23)

6We include here and in the following with those interactions, a peculiar set of cubic interactions, with

a derivative coupling to Ã, corresponding to k1 + k4 = 2, k2 = 1 and k3 = 0 (see below), which will play a

similar role.
7Of course the discussion here is a bit loose, it will be made more precise when dealing with spherically

symmetric solutions.
8We do not consider here, as done e.g. in [18], the issue of the quantum corrections to the theory and

only discuss it from a purely classical perspective.
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In this limit, all the quantities Λk1,k2,k3,k4 (with {k1, k2, k3, k4} 6= {0, 0, 3, 0}) are sent to

zero or infinity. The action one is left with for φ̃ is of the form9

S =
1

2

∫

d4x

{

3

2
φ̃�φ̃+

1

Λ5

[

α
(

�φ̃
)3

+ β
(

�φ̃ φ̃,µν φ̃
,µν
)

]

− 1

MP
T φ̃

}

, (2.24)

where α and β are numerical coefficients that can be adjusted at will by choosing an

appropriate interaction term Sinf [f, g],
10 and T is the trace of the energy momentum tensor.

For example, the BD potential (2.4) leads to α = −β = −1/2, while the AGS potential (2.5)

leads to the opposite case α = −β = 1/2. The equation of motion deriving from this

action is

3�φ̃+
1

Λ5

[

3α �
(

�φ̃
)2

+ β �
(

φ̃,µν φ̃
,µν
)

+ 2β ∂µ∂ν

(

�φ̃ φ̃,µν
)

]

=
1

MP
T . (2.25)

This equation of motion is fourth order which signals generically ghost propagating degrees

of freedom. In fact, one can argue [16, 17] that one can see this way a generic property of

massive gravity once discovered by Boulware and Deser [11]: namely the fact that nonlinear

massive gravity propagates at nonlinear level one more degree of freedom than linear Pauli-

Fierz theory, the energy of the extra propagating mode being unbounded below. This is a

major obstacle to the possibility to consider nonlinear Pauli-Fierz theories defined as above

as a realistic theories (see however [26]), but, again, our aim is here to use this theory like

a toy model to study the Vainshtein mechanism, and not to advocate for a realistic use

of it.

3 Static spherically symmetric solutions

In this section we introduce our framework to look for static spherically symmetric solutions

of massive gravity. We also describe the Vainshtein mechanism. First, in section 3.1, we

present ansätze for the metrics and discuss possible coordinate choices. In what follows

we will mainly be interested in the bi-diagonal ansätze, i.e. those where both metrics can

be put simultaneously in a diagonal form. It turns out that, in this case, a convenient

coordinate choice is so-called the λ, µ, ν gauge (following the terminology of reference [12])

that will be introduced. The equations of motion in this gauge (together with the Bianchi

identity) form a system of ordinary differential equations for the three functions λ, ν and µ

to be determined. This system is strongly nonlinear and cannot be integrated analytically.

However, different asymptotic regimes can be studied separately. First, one expansion

can be made in the Newton constant, GN . This expansion will be found to be valid far

from the source (i.e. for distances R ≫ RV , where RV is the Vainshtein radius that we

will introduce). At lowest order, it does not match the similar expansion that one can

make in General Relativity, this being reexpressed in the form of the vDVZ discontinuity.

9While h̃ Ã become free.
10Note that in general, the cubic term for φ̃ is given by some linear combination of the three terms (�φ̃)3,

�φ̃ φ̃,µν φ̃,µν and φ̃,µν φ̃,µαφ̃,ν
,α, but an integration by part can always be used to reduce the number of

independent terms to two, as shown in eq. (2.24).
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Vainshtein conjectured that close to the source the General Relativity solution can be

restored via the effect of the nonlinear corrections. This is the essence of the Vainshtein

mechanism explained in section 3.2. In the Vainshtein original proposal [10], a scaling with

distance is proposed for the first correction to the Schwarzschild solution close to the source

(i.e. for R ≪ RV ). Here we show that there is another possible scaling that will play an

important rôle, as will be discussed in section 4.

3.1 Ansätze and coordinate choices

The most general static spherically symmetric ansatz for solutions of the theory defined by

action (2.3) takes the form

gµνdx
µdxν = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2,

fµνdx
µdxν = −C(r)dt2 + 2D(r)dtdr +A(r)dr2 +B(r)dΩ2,

where dΩ2 is the canonical metric of a unit 2-sphere

dΩ2 = dθ2 + sin2 θdϕ2.

The above ansatz can further be simplified by setting L be one, by a suitable choice of

the radial coordinate r. However, in general, it is not possible to put both metric at the

same time in a diagonal form by a coordinate change without imposing restrictions on

the solutions, this is because we only have one diffeomorphism invariance (2.7) at hand.

Different cases have been considered in the literature and some solutions are explicitly

known in the case when metrics are not both diagonal [12, 27]. In this work we will only

consider bi-diagonal cases where the non dynamical metric is parametrizing a Minkowski

(non dynamical) background space-time. It will turn out useful to use different type of

gauge and ansätze. A first gauge choice (called the ”a,b,c gauge” in [12]) is defined by

metrics in the following form

gABdx
AdxB = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

(3.1)

A simple coordinate change XA(X ′)

z = r cos θ,

x = r sin θ cosϕ,

y = r sin θ sinϕ,

puts of course fAB in the canonical Minkowski form ηAB (we will not need the corresponding

expression for g)

fABdx
AdxB = −dt2 + dx2 + dy2 + dz2. (3.2)

Note that both gauges (3.1) and (3.2) have in common that all the unknown functions

(J , K and L) are put in the metric g and hence, in agreement with our definitions of

section 2.2, we can consider those gauges as unitary. A non unitary gauge, which has some
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advantages, is the one where one of the unknown function J,K,L is put into the expression

of the non dynamical metric, given by

gµνdx
µdxν = −eν(R)dt2 + eλ(R)dR2 +R2dΩ2 ,

fµνdx
µdxν = −dt2 +

(

1 − Rµ′(R)

2

)2

e−µ(R)dR2 + e−µ(R)R2dΩ2 ,
(3.3)

where here and in the following a prime denotes a derivation with respect to R. The

relation between gauges (3.1) and (3.3) is given by

Re−µ(R)/2 = r, (3.4)

while the relation between the functions appearing in the metric coefficients are

J(r) = eν(R),

K(r) = eλ(R)eµ(R)

(

1 − Rµ′(R)

2

)−2

,

L(r) = e µ(R).

Following reference [12], we will call the gauge (3.3) the λ, µ, ν gauge. It has the advantage

that the g metric can readily be compared to the usual Schwarzschild metric of standard

General Relativity. The coordinate change defined by

Z = R cos θ,

X = R sin θ cosϕ,

Y = R sin θ sinϕ,

puts then the metric g and f in the form

gµνdx
µdxν = −eν(R)dt2 + dX2 + dY 2 + dZ2

+

(

eλ(R) − 1

R2

)

(XdX + Y dY + ZdZ)2 (3.5)

fµνdx
µdxν = −dt2 + e−µ(R)(dX2 + dY 2 + dZ2)

+

(

−µ
′

R
+
µ′2

4

)

e−µ(R) (XdX + Y dY + ZdX)2 (3.6)

with R2 = X2 + Y 2 + Z2. We obtain easily the relation between coordinates {XA} =

{t, x, y, z} of the unitary gauge (3.2) and coordinates {xµ} = {t,X, Y, Z} of the non unitary

gauge (3.5) as (the time coordinate t being the same in the two gauges).

x = Xe−µ(R)/2 = X
r

R
= r∂XR,

y = Y e−µ(R)/2 = Y
r

R
= r∂YR,

z = Ze−µ(R)/2 = Z
r

R
= r∂ZR.

(3.7)
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The Jacobian J̃ of the transformation (3.7), |∂µX
A|, is given by

J̃ = e−
3
2
µ(R)

(

1 − R

2
µ′(R)

)

. (3.8)

It does not vanish except possibly on a sphere of radius R where

R

2
µ′(R) = 1. (3.9)

Obviously, a generic function µ would not define via eq. (3.7) a one to one mapping over

the whole Minkowski space. To obtain such a mapping, a sufficient condition is that r(R) is

a strictly monotonous function of R which maps the real positive half line to itself with an

everywhere non vanishing Jacobian. In this paper, because we will deal with the Decoupling

Limit, we will not be careful about what is happening at the origin r = 0. However, a

necessary condition on µ is that r(R) maps the origin to itself, and hence µ should verify

lim
R→0

Re−µ(R)/2 = 0. (3.10)

Note that the monotonicity of r(R) is automatic, provided that (3.9) never holds. Given a

particular solution for µ, λ, and ν, the above conditions could prevent the solution to be

interpreted as a correct solution of the equation of motion of the theory (2.3).

3.2 The Vainshtein mechanism

3.2.1 A short introduction to the vDVZ discontinuity and the Vainshtein

mechanism

The (quadratic) Pauli-Fierz theory, with a mass term given as in eq. (2.1), is known to

suffer from the van Dam-Veltman-Zakharov (vDVZ) discontinuity, i.e. the fact that when

one lets the mass m of the graviton vanish, one does not recover predictions of General

Relativity. E.g., if one adjusts the parameters (namely the Planck scale) such that the

Newton constant agrees with the one measured by some type of Cavendish experiment,

then the light bending as predicted by Pauli-Fierz theory (and for a vanishingly small

graviton mass) will be 3/4 of the one obtained by linearizing GR [9].11 One way to see

this is to consider solutions of equations of motion (2.8) which are static and spherically

symmetric and which would describe the metric around a spherically symmetric body such

as the Sun. To do so, using the ansatz (3.3) is especially convenient because in this form the

g metric can be easily compared with the standard Schwarzschild solution. If one tries to

find a solution expanding in the Newton constant, as we recall in subsection 3.2.3, one finds

immediately the vDVZ discontinuity appearing in the form of a different (m independent)

11The fact it is smaller is easy to understand: the essential difference between Pauli-Fierz theory and

linearized GR comes from an extra propagating scalar mode present in the massive theory. This mode exerts

an extra attraction in the massive case compared to the massless case. Hence, if one wants measurements

of the force exerted between non relativistic masses to agree, the coupling constant of the massive theory

should be smaller than that of the massless theory. But light bending is blind to the scalar sector - because

the light energy momentum tensor is traceless. Hence, provided the two theories agree on the force between

non relativistic probes, the massive theory would predict a smaller light bending than the massless one.
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absolute value of the coefficients in front of the first non trivial correction to flat space-

time in gtt and gRR components (neglecting the Yukawa decay by assuming the Compton

wavelength of the graviton is much larger than other distances of interest). However, as

first noticed by Vainshtein [10], the computation of the next order correction shows that

the first order approximation ceases to be valid at distances to the source smaller than a

composite scale, the Vainshtein radius defined by

RV =
(

m−4RS

)1/5
, (3.11)

where RS is the Schwarzschild radius of the source. This Vainshtein radius obviously

diverges when one lets m go to zero and in fact is much larger than the solar system size

for a massive graviton with a Compton wavelength of the order of the Hubble radius. Hence,

one can not conclude that massive gravity is ruled out based on solar system observations

and results of the original works on the vDVZ discontinuity [9]. Vainshtein also showed

that an expansion defined around the standard Schwarzschild solution can be obtained (as

recalled in subsection 3.2.4) that is well behaved when the mass of the graviton is sent

to zero, opening the possibility of a recovery of GR solution at small distances R of the

source. Indeed, the domain of validity of this second expansion was shown to be R≪ RV .

Moreover, the correction found by Vainshtein to the Schwarzschild solution are non analytic

in the Newton constant which could have explained the failure of the attempt to obtain a

solution expanding in the Newton constant. This is the aim of this section 3.2 to give more

details on the so-called Vainshtein mechanism, i.e. the possibility of a non-perturbative

recovery of solutions of GR, which is the bulk of the studies of this work.

3.2.2 Equations of motion in the λ, µ, ν gauge

Let us first consider the gauge (3.3). In this gauge, the equations of motion (2.8) read

eν−λ

(

λ′

R
+

1

R2
(eλ − 1)

)

= 8πGN (T g
tt + ρeν) ,

ν ′

R
+

1

R2

(

1 − eλ
)

= 8πGN

(

T g
RR + Peλ

)

, (3.12)

where the source energy momentum tensor T ν
µ is assumed to have the perfect fluid form

T ν
µ = diag(−ρ, P, P, P ),

with total mass

M ≡
∫ R⊙

0
4πR2 ρ dR.

The matter conservation equation reads

P ′ = −ν
′

2
(ρ+ P ), (3.13)

while the Bianchi identities have the only non trivial component

− 1

m2M2
P

1

R
∇µT g

µR = 0. (3.14)
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Expanding equations (3.12) and (3.14) in power of λ, ν and µ, we find

λ′

R
+

λ

R2
+G

(Q)
tt (ν, λ) +G

(C>)
tt (ν, λ) = −m

2

2
(λ+ 3µ+Rµ′) + 8πGNρ

+m2Qtt(ν, λ, µ) + ν8πGNρ

+m2C>
tt (ν, λ, µ)

+ν8πGNρ(e
µ − 1 − ν), (3.15)

ν ′

R
− λ

R2
+G

(Q)
RR(ν, λ) +G

(C>)
RR (ν, λ) =

m2

2
(ν + 2µ) + 8πGNP

+m2QRR(ν, λ, µ) + λ8πGNP

+m2C>
RR(ν, λ, µ)

+ν8πGNP (eλ − 1 − λ), (3.16)

λ

R2
− ν ′

2R
−Qb(ν, λ, µ) − C>

b (ν, λ, µ) = 0, (3.17)

where G
(Q)
tt , G

(Q)
RR and Qb represent respectively the quadratic (in power of λ, µ and ν)

part of Gtt, GRR and the Bianchi identity; G
(C>)
tt , G

(C>)
RR and C>

b represent respectively

the cubic and higher part of Gtt, GRR and the Bianchi identity. The expressions of some

of those quantities can be found in appendix B.

3.2.3 Expansion in the Newton constant

We can first look for solution of the system (3.15)–(3.17) expanding the solution into powers

of the usual Schwarzschild radius RS of the source (or into the Newton constant). More

explicitly, we expand as in

λ = λ0 + λ1 + · · ·
ν = ν0 + ν1 + · · ·
µ = µ0 + µ1 + · · ·

where λi, νi, µi are expected to be proportional to Gi+1
N , and we consider a regime where

λi+1 ≪ λi, νi+1 ≪ νi and µi+1 ≪ µi.

At linear order, far from the source, the equations of motion reduce to

λ′0
R

+
λ0

R2
= −m

2

2
(λ0 + 3µ0 +Rµ′0),

ν ′0
R

− λ0

R2
=
m2

2
(ν0 + 2µ0),

λ0

R2
=

ν ′0
2R

.

(3.18)

Notice that the expansion of the Bianchi identity does not contain a term linear in µ, as

can be seen from equation (3.17), this being due to the peculiar structure of the Pauli-Fierz

mass term. The exact solution of the system (3.18) can be found in ref. [12]. However,

we are interested here in the limit where Rm≪ 1, and want to simplify the linear system

accordingly. One can see from the third equation that λ0 and ν0 are of the same order:
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λ0 ∼ ν0, while the first or the second equation indicates that µ0 ∼ λ0/(mR)2 ≫ λ0, ν0. As

a consequence, the system can be simplified to

λ′0
R

+
λ0

R2
= −m

2

2
(3µ0 +Rµ′0),

ν ′0
R

− λ0

R2
= m2µ0,

λ0

R2
=

ν ′0
2R

,

with the scaling (valid for mR≪ 1)

µ0 ≫ λ0 ∼ ν0. (3.19)

One can extract from the above system an equation for µ0 reading

3µ0 +Rµ′0 = 0, (3.20)

which can easily be solved to get

λ0 =
C1

2R
, ν0 = −C1

R
, µ0 =

1

(mR)2
C1

2R
. (3.21)

where C1 is a constant of integration which is expected to be proportional to GN and has

to be fixed by matching to the source.

At second order, we solve

λ′1
R

+
λ1

R2
+G

(Q)
tt (ν0, λ0) = −m

2

2
(λ1 + 3µ1 +Rµ′1) +m2Qtt(ν0, λ0, µ0), (3.22)

ν ′1
R

− λ1

R2
+G(Q)

rr (ν0, λ0) =
m2

2
(ν1 + 2µ1) +m2Qrr(ν0, λ0, µ0), (3.23)

λ1

R2
=

ν ′1
2R

+Qb(ν0, λ0, µ0). (3.24)

Assuming that ν1 and λ1 are of the same order (in line with ν0 ∼ λ0), and using the

scaling (3.19) we find from (3.24) the scaling

λ1 ∼ ν1 ∼ µ2
0 ∼ RS

R
× 1

(mR)4
RS

R
.

As a consequence the above system (3.22)–(3.24) reduces to (in the mR≪ 1 limit)

λ′1
R

+
λ1

R2
= −m

2

2
(3µ1 +Rµ′1) (3.25)

ν ′1
R

− λ1

R2
= m2µ1 (3.26)

λ1

R2
=

ν ′1
2R

+Q(µ0), (3.27)

with Q(µ0) ≡ Qb(0, 0, µ0). For the interaction terms of eq. (2.4) and (2.5), we find respec-

tively (see the expressions given in appendix B)

Q(2)(µ) =
µ′2

4
+
µµ′′

2
+

2µµ′

R
(3.28)

Q(3)(µ) = −Q(2)(µ). (3.29)
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In the general case one can show (cf. appendix B) that Q(µ) is given by

Q(α,β)(µ) = − 1

2R

{

3α

(

6µµ′ + 2Rµ′2 +
3

2
Rµµ′′ +

1

2
R2µ′µ′′

)

+β

(

10µµ′ + 5Rµ′2 +
5

2
Rµµ′′ +

3

2
R2µ′µ′′

)}

, (3.30)

where α and β are numerical constants depending on the interaction term Sint[f, g].

We can eliminate λ1 and ν1 from the above system (3.25)–(3.27) to get an equation

for µ1

3Q(µ0) + rQ′(µ0) = −3

4
m2
(

3µ1 +Rµ′1
)

.

Hence, gathering the linear and quadratic terms in the GN expansion, we find

ν = −R̄S

R
+
R̄2

S

R2

n1

(mR)4
+ O(R̄3

S) (3.31)

λ =
1

2

R̄S

R
+
R̄2

S

R2

l1
(mR)4

+ O(R̄3
S) (3.32)

µ =
1

2(mR)2
R̄S

R
+
R̄2

S

R2

m1

(mR)6
+ O(R̄3

S) (3.33)

where n1, m1 and l1 are order one dimensionless quantities that depend on the details

of the quadratic term Q(µ0), and R̄S is the Schwarzschild radius defined as usual from

the ”Cavendish” Newton constant ḠN (defined as the one which is measured in some

Cavendish-like experiment, assuming the Newtonian potential is given at leading order

by the first term in the right hand side of equation (3.31)). To obtain the expres-

sions (3.31)–(3.33) above, we have fixed the integration constant C1 such that the Newto-

nian force between non relativistic pointlike bodies matches the one obtained in Newtonian

theory (assuming those bodies are separated by a distance much larger than the Vainshtein

radius and much smaller than the graviton Compton wavelength). As we said above, this

requires defining the Newton constant ḠN as 4/3 of GN ,12 as defined by equation eq. (2.2).

We also see the vDVZ discontinuity in the fact that the coefficient in front of R̄S/R in

the first term on the right hand side of (3.32) is not equal to one (as it would be in GR).

Finally, we see that this expansion is only valid for R ≫ RV where RV is the Vainshtein

radius defined as in (3.11).

3.2.4 Small R expansion

At small R, R ≪ RV , following Vainshtein’s idea, one is looking for an expansion around

solutions of usual General Relativity. In other words, one looks for an expansion in power

of the mass of the graviton (squared) m2 and expands the functions λ, ν, µ as in

f(R) =
∞
∑

n=0

m2nfn(R) ,

12So that we have also R̄S = 4/3RS , where RS is the Schwarzschild radius used in the rest of this paper.
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where the fn are m-independent coefficients. By definition, the lowest order expressions of

λ and ν are given by the Schwarzschild form

λ0 = −ν0 = − ln

(

1 − RS

R

)

=
RS

R
+

1

2

(

RS

R

)2

+ · · · (3.34)

Keeping the lowest order term in RS/R, λ0 and ν0 are simply obtained by solving the

vacuum linearized Einstein equations

λ′0
R

+
λ0

R2
= 0

ν ′0
R

− λ0

R2
= 0.

The function µ0 is found using the Bianchi equation (3.17)

λ0

R2
=

ν ′0
2R

+Q(µ0),

where only the lowest order terms have been kept. Inserting in the above equation the GR

solution (3.34), we find that one should have

Q(µ0) =
RS

2R3
, (3.35)

where the lowest order in RS/R has been kept. Assuming, following Vainshtein, that µ0

can be expanded as a power of R, we find that the first non trivial term should be of

the form

µ0 = M0

√

RS/R,

≫ λ0, ν0, (3.36)

whereM0 is a pure number. Hence, there is a first potential obstruction to the success of the

Vainshtein mechanism [12], namely the left hand side of equation (3.35) must be positive

definite, which is only possible for particular quadratic terms Q(µ0). e.g. the interaction

term (2.4) leads via equation (3.35) to an imaginary M0 and hence, for this potential the

scaling proposed by Vainshtein does not work (see however below). In contrast, from the

interaction term (2.5) (and hence equation (3.29)), one finds the real value M0 = ±
√

8/9.

The next order for λ1 and µ1 is given by solving equations (3.15)–(3.16). In the

limit where

RS ≪ R≪ m−1,

taking into account the scaling (3.36), those equations simply reduce to

λ′1
R

+
λ1

R2
= −m

2

2
(3µ0 +Rµ′0)

ν ′1
R

− λ1

R2
= m2µ0,
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while µ1 is obtained solving the Bianchi identity (3.17) which reduces, in the limit consid-

ered, to
λ1

R2
− ν ′1

2R
= Qb(0, 0, µ0 + µ1),

where in the right hand side of the above equation only the term linear in µ0 and µ1 are

kept (cross products). Eventually, we obtain an expansion of the form found by Vainshtein

given by

ν = −RS

R
+N1 (mR)2

√

RS

R
+ O

(

m4
)

, (3.37)

λ =
RS

R
+ L1 (mR)2

√

RS

R
+ O

(

m4
)

, (3.38)

µ = M0

√

RS

R
+M1 (mR)2 + O

(

m4
)

, (3.39)

where again M0, N1, L1 and M1 are order one dimensionless numbers. This expansion

makes sense only if m2O
(

R2
√

RS
R

)

[

1 + O
(

RS
R

)]

≪ RS
R

[

1 + O
(

RS
R

)]

, i.e., if R . RV =

(

m−4RS

)1/5
.

Note however that there is another possible expansion at small R that has not been

discussed previously in the literature and for which one also recovers the GR solution.

Indeed, the operator Q, appearing on the left hand side of equation (3.35), can have a

zero mode in the form of a power law, µQ ∝ Rp, and one can find an expansion for µ

starting with this zero mode. e.g. in the cases of interaction terms (2.4) and (2.5), where

the corresponding operators Q are given by equations (3.28) and (3.29), one finds p = −2,

and hence in those cases, as we will discuss in more details in the next section (together

with a discussion of the most general case) it is possible to find a solution to equation (3.35)

in the form

µ0 = (mRS)2/5

(

A0

(

RV

R

)2

− s

3A0

R

RV
log(R/RV )

)

+ O
(

R

RV

)

, (3.40)

where s = −1 for the potential (2.4) and s = +1 for the potential (2.5), and A0 is a pure

number. Such an expansion will in fact, as will be shown in the next section, turn out to be

the most general one found by numerical integration of the equations of motion in vacuum.

3.2.5 Matching small R and large R behaviours

It was noticed immediately after the seminal work of Vainshtein that there was no war-

ranty that one could match the solution found by Vainshtein in the small R limit, given

by equations (3.37)–(3.39), to the one obtained in the large R limit, and given by equa-

tions (3.31)–(3.33) [11]. More recently, numerical integration of the full (nonlinear) system

of equations (3.15)–(3.17) has shown indeed [12] (see also [13]), that integrating inwards

from the large R behaviour (3.31)–(3.33) or outwards, from the small R behaviour, always

results in singularities appearing at finite R (provided one insists upon the solution to be

asymptotically flat). In fact the exact reason for which those singularities arise has not
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been clarified so far in the literature and it is one of the main purpose of this work to

reexamine this question in the light of the Goldstone formalism in the decoupling limit

of ref. [18]. The general understanding is that one can link those singularities, and hence

the failure of the Vainshtein mechanism, to the ghost-like nature of the extra degree of

freedom discovered by Boulware and Deser [11] to be present in the nonlinear theory, and,

as recalled above, appearing in the Goldstone formalism in the form of higher derivative

operators [16, 17].

4 The decoupling limit in spherically symmetric solutions

In this section we study static spherically symmetric solutions in the decoupling limit (DL

in the following). We first show (section 4.1.1) how to obtain a DL in the case of the static

spherically symmetric ansatz (3.3). We then show (4.1.2) that this DL is in fact analogous

to the one introduced in section 2.3 and we show the scalar field φ is closely related to the

metric function µ of the gauge (3.3). We give the explicit link between the two and show

that in the decoupling limit, both fields obey the same equation of motion. The DL allows

to decouple the scalar degree of freedom, which appears due to the presence of the potential

term, from the degrees of freedom also present in GR. In this limit, the study of solutions

is greatly simplified, in particular, instead of three equations of motion (3.15)–(3.17) there

will be only one (nonlinear) equation for the “gauge” function µ (or equivalently for φ).

This is consistent with the fact that by extracting the DL the GR degrees of freedom

become decoupled from the scalar degrees of freedom.

On the other hand, one can hope that the DL will contain the main features of the

full system, since it isolates the ”troublesome” scalar degrees of freedom. For example,

the large-R asymptotic solution and the Vainshtein solution of the full system have DL

analogues. On the other hand, as was recalled at the end of the previous section, the

Vainshtein mechanism was found to fail for the theory considered here, by integrating the

full nonlinear system of equations (3.15)–(3.17). Thus a natural question to ask is whether

one can already see this failure in the DL. In the section 4.1.3, we discuss briefly the

expected range of validity of the DL.

The main results of this section are obtained in section 4.2 where we solve numerically

the DL equations of motion. After a discussion of boundary conditions at infinity (sub-

section 4.2.1), we first introduce a simple linear differential equation which shares some

crucial properties with the one obtained in the DL (subsection 4.2.2). Then we discuss

solutions outside the source and inside the source in the simplest cases of potential (2.4)

and (2.5) (subsections 4.2.3 and 4.2.4). Last, we turn to discuss the most general case

(subsection 4.2.5).

4.1 Extracting the limit

4.1.1 Rescaling and limiting equations of motion

First, let us note, as should be clear from the derivations presented in section 3.2, that

both the expansion in the Newton constant (in the limit where R ≪ m−1) as given by

equations (3.31)–(3.33) and the expansion in the mass of the graviton (in the limit where
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R ≫ RS) as given by equations (3.37)–(3.39) (as well as (3.40)) are left unchanged if one

first does the rescaling on the metric functions,

ν̃ ≡ MP ν,

λ̃ ≡ MPλ,

µ̃ ≡ m2MPµ, (4.1)

and on the components of the energy-momentum tensor

ρ̃ ≡ ρ/MP ,

P̃ ≡ P/MP ,

and then takes the DL as it is defined in (2.23). More precisely, plugging the rescaled func-

tions ν̃, λ̃ and µ̃ into the equations of motion (3.15)–(3.17), and assuming those functions to

be bounded, one sees that in the DL (2.23), the nonlinear system of equations (3.15)–(3.17)

collapses to the much simpler one

λ̃′

R
+

λ̃

R2
= −1

2
(3µ̃+Rµ̃′) + ρ̃

ν̃ ′

R
− λ̃

R2
= µ̃

λ̃

R2
=

ν̃ ′

2R
+
Q(µ̃)

Λ5
(4.2)

where Λ is defined as in (2.20). So the only non linearities which remain in this limit are

those corresponding to the piece of the Bianchi identity quadratic in µ. Note that we have

set the pressure P̃ to zero in the above equations (4.2), since this is a direct consequence

of taking the decoupling limit in the matter conservation equation (3.13):

P̃ ′ = − ν̃ ′

2MP

(

ρ̃+ P̃
)

→ 0 when MP → 0 . (4.3)

It is easy to extract from the above system (4.2) a single equation obeyed by µ̃ reading

1

Λ5

[

6Q(µ̃) + 2RQ(µ̃)′
]

+
9

2
µ̃+

3

2
R µ̃′ = ρ̃ . (4.4)

As we will see in the next subsection, one can map this equation to the equation of motion

found for φ̃, equation (2.25), and hence there is a very clear relation between the decoupling

limit as we just defined, obtained from the equations of motions in the λ, µ, ν gauge, and

the one discussed in the original reference [18] as summarized in section 2.3. Before turning

to discuss in detail this relation, let us first note that equation (4.4) can easily be integrated

once leading to the first integral

2

Λ5
Q(µ̃) +

3

2
µ̃ =

C2

R3
+

1

R3

∫ R

0
dR̃ ρ̃

(

R̃
)

R̃2 (4.5)
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where C2 is an integration constant. Notice that outside the source, the integral on the

right hand side of equation (4.5) gives a constant and hence this simply results in a shift

of the integration constant C2 to yield

2

Λ5
Q(µ̃) +

3

2
µ̃ =

C0

R3
. (4.6)

As usual, the integration constant C0 should be fixed by matching to the source. The two

limiting regimes discussed in section 3.2 are easily recovered from this equation. The lowest

order term in the expansion into the Newton constant (valid at R ≫ RV ) corresponds to

keeping only the linear order in µ̃ in the left hand side of (4.6), recovering equation (3.20).

The lowest order term in the expansion in m2 (valid at R ≪ RV ) corresponds to keeping

only the quadratic term Q(µ̃) in the left hand side of (4.6), recovering the scaling µ ∼
O
(

√

RS/R
)

found in equation (3.39). Assuming the validity of the Vainshtein recovery

mechanism, one can easily fix the (shifted) integration constant C0 for a point like source,

by using the known form of the functions ν̃ and λ̃ at lowest order in the m2 expansion which

is given by their expressions in standard General Relativity (at lowest order in RS/R). This

fixes that, in this limit (see e.g. equation (3.35)),

2

Λ5
R3Q(µ̃) →MPRS , (4.7)

and hence,

C0 = MPRS . (4.8)

Note that the above equations (4.5)–(4.6) take their most simple expressions when Q is

given as in equations (3.28)–(3.29), i.e. for the interaction terms (2.4) and (2.5), in which

case e.g. equation (4.6) reads

− s

Λ5

(

µ̃′2

2
+ µ̃µ̃′′ +

4µ̃µ̃′

R

)

+
3

2
µ̃ =

C0

R3
, (4.9)

where again s = −1 for the BD interaction term (2.4) and s = +1 for the AGS mass

term (2.5). For future use, and for numerical integration, it turns out convenient to intro-

duce the dimensionless quantities

ξ ≡ R/RV ,

ρa ≡ 4π
R3

V

M
ρ ,

w(ξ) ≡ a−2 µ ,

v(ξ) ≡ a−4 ν ,

u(ξ) ≡ a−4 λ ,

where we used the dimensionless parameter

a ≡ RVm = (RSm)1/5 .
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The functions u and v are just the dimensionless functions λ and ν associated with the gµν

metric, while w corresponds to µ, and ξ is the dimensionless distance R expressed in unit

of the Vainshtein radius RV . In term of these quantities, the system (4.2) reads

u̇

ξ
+
u

ξ2
= −1

2
(3w + ξẇ) + ρa

v̇

ξ
− u

ξ2
= w

u

ξ2
=

v̇

2ξ
+Q(w),

where a dot denotes a derivative with respect to ξ. Eliminating u and v from the above

system, we get the analogous of eq. (4.6) for the rescaled variable w

2 Q(w) +
3

2
w =

c0
ξ3
, (4.10)

where c0 is defined by

c0 =
C0

R5
V Λ5

.

Fixing the integration constant as in (4.8), leads to c0 = 1, and the equation for w now reads

2 Q(w) +
3

2
w =

1

ξ3
, (4.11)

which will be assumed from here-on and until the end of this article. The general form of

Q can be read from equation (3.30), R being replaced by ξ and µ by w. It is given by

Q(w) = −1

2

{

3α

(

ξ

2
ẇẅ +

3

2
wẅ + 2ẇ2 +

6wẇ

ξ

)

+β

(

3ξ

2
ẇẅ +

5

2
wẅ + 5ẇ2 +

10wẇ

ξ

)

}

. (4.12)

E.g., in the simplest case of the potentials leading to equation (4.9), one has α+β = 0 and

equation (4.11) reads

− s

(

ẇ2

2
+ wẅ + 4

wẇ

ξ

)

+
3

2
w =

1

ξ3
. (4.13)

We now turn to compare the above obtained equations for µ̃ (or w), eq. (4.10), with the

equation of motion of φ̃.

4.1.2 Comparison with the Goldstone picture

The most general equation of motion for φ̃, eq. (2.25), can be rewritten in the following

form involving a total derivative

∇µ

{

3Λ5∇µφ̃+ 3α∇µ
(

�φ̃
)2

+ β∇µ
(

φ̃;δγ

)2
+ 2β∇ν

(

�φ̃φ̃;µ
ν

)

}

=
Λ5

MP
T.

– 23 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
8

Hence, it is easy to see that, in the case of a spherically symmetric configuration φ̃(R), this

equation can always be integrated once to yield

3
φ̃′

R
+

2

Λ5

{

3α

(

−4
φ̃′2

R4
+ 2

φ̃′φ̃′′

R3
+ 2

φ̃′′2

R2
+ 2

φ̃′φ̃(3)

R2
+
φ̃′′φ̃(3)

R

)

+

+β

(

−6
φ̃′2

R4
+ 2

φ̃′φ̃′′

R3
+ 4

φ̃′′2

R2
+ 2

φ̃′φ̃(3)

R2
+ 3

φ̃′′φ̃(3)

R

)}

(4.14)

= − C̃2

R3
− 1

R3

∫ R

0
dR̃ ρ̃

(

R̃
)

R̃2,

where we used that, according to eq. (4.3), T/MP = −ρ̃ in the decoupling limit, and

where C̃2 is an integration constant. Let us now see how this equation compares with

equation (4.5) obtained for µ̃ in the previous subsection. As we have seen, the relation

between the unitary gauge (3.2) and the gauge (3.5) is encoded into the function µ(R)

though the coordinate change (3.7). On the other hand, it is also contained in the Goldstone

field πA, and in our case, in a single scalar field φ defined as in (2.15)–(2.16) by

ηAB∂Bφ = XA(xµ) − δA
µ x

µ, (4.15)

where as follows from (3.7) XA and xµ are given by {XA} = {t, x, y, z} and {xµ} =

{t,X, Y, Z}, and XA(xµ) is given by the coordinate change (3.7). It is easy to see that

equation (4.15) has the solution φ(R)

φ′ ≡ ∂Rφ = R
(

e−
µ(R)

2 − 1
)

, (4.16)

and that in this particular case no vector field AB is needed. Note that the relation between

µ and φ is in fact ”non perturbative” because of the presence of the exponential in the

above relation. The limiting conditions (3.10) translate via relation (4.16) into

lim
R→0

φ′(R) = 0. (4.17)

This is precisely the limiting condition one would impose on a scalar field φ in a spherically

symmetric configuration in order to have everywhere well defined second derivatives. For

small µ, the above expression (4.16) can be expanded as

φ′ ≡ ∂Rφ = −R
(

1 − e−
µ(R)

2

)

∼ −Rµ
2

+
Rµ2

8
+ · · ·

If we go to the canonically normalized φ̃, defined in equation (2.19), and use the rescaled

metric variables as defined in (4.1), and then take the decoupling limit (2.23), one is left

with the simple relation between φ̃ and µ̃ given by

µ̃ = − 2

R
φ̃′ . (4.18)
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Substituting φ̃′ in the equation (4.14) we get then

3

2
µ̃− 1

RΛ5

{

3α

(

6µ̃µ̃′ + 2Rµ̃′2 +
3

2
Rµ̃µ̃′′ +

1

2
R2µ̃′µ̃′′

)

+β

(

10µ̃µ̃′ + 5Rµ̃′2 +
5

2
Rµ̃µ̃′′ +

3

2
R2µ̃′µ̃′′

)

}

=
C̃2

R3
+

1

R3

∫ R

0
dR̃ R̃2ρ̃

(

R̃
)

,

and we recover exactly equation (4.5) (identifying C̃2 and C2). It is however interesting to

note that the boundary condition (4.17) can be lost in the decoupling limit due to the ”non

perturbative” (exact) relation between φ and µ given by equation (4.16). For example, if

one considers the field theory defined by action (2.24) and looks for a spherically symmetric

solution, one is led to impose that φ̃′(0) vanishes. This, via relation (4.18) imposes however

a condition on µ̃ which is not necessary considering the conditions given at the end of

section 3.1.

4.1.3 Expected range of applicability of the Decoupling Limit

We would like here to discuss to what extent the DL is capturing the leading behaviour of

the solution of the full nonlinear system. As we will see, the DL is expected to be valid for

distances in-between the Compton length of graviton m−1, and a scale that is parametri-

cally lower than the Vainshtein radius and can even reach the Schwarzschild radius.

First, as should be clear from the discussion of section 3.2.3, the DL should give a good

description of the solution at least in the range RV ≤ R ≪ m−1. Another way to check

this is to look more carefully at the expressions (2.21). Indeed, it is easy to check that the

quadratic, cubic and quartic non derivative self interactions (2.21) (with appropriate values

of k1, k2, k3, k4) do not give significant corrections to the DL solutions for RV ≤ R≪ m−1,

while the cubic derivative φ̃ self interaction is retained in the DL. Comparing the other

interactions (2.21) to the kinetic terms in the regime where the linearized theory is expected

to hold (i.e. for R≫ RV ), one sees that those interactions have each their own ”Vainshtein”

radii (corresponding to distances where those interactions generate O(1) correction to the

linearized theory) which are strictly smaller than RV , as first noted in ref. [18]. Those radii

are sent to zero in the DL, while RV is kept unchanged.

Let us now discuss what is going on at distances smaller than RV . Using again the

expressions (2.21), it is easy to see that the quadratic, cubic and quartic non derivative

self interactions stay negligeable at least up to RS , while one can estimate when the other

interactions become of the same order as the cubic interaction retained in the DL. Indeed,

the Vainshtein scaling (3.37)–(3.39) translates into the scaling h ∼ RS/R, ∂∂φ ∼ µ ∼
√

RS/R (via eq. (4.16)), and A ∼ 0. From which one easily obtains the scaling of the

canonically normalized fields h̃, φ̃, and Ã. Inserting this into eq. (2.21) we see that a generic

interaction (2.21) is much smaller than the cubic φ̃ all the way down to the Schwarzschild

radius RS . Hence, as discussed in ref. [16], assuming the Vainshtein scaling, one expects

the DL to be correctly describing the solution of the full nonlinear theory below m−1 and

down to RS . The same question can be asked for the other scaling introduced above in

eq. (3.40). For this scaling, and below the Vainshtein radius, one still have h ∼ RS/R,
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while we have ∂∂φ ∼ µ ∼ m2R4
VR

−2. To estimate the range of validity of the leading

behaviour of the DL solution, one has to pay attention to the fact that the leading term

in eq. (3.40) is a zero mode of the kinetic operator associated with the cubic term in the

action of the DL. This kinetic operator, evaluated on this leading behaviour, is a sum of

three terms which add to zero (see e.g. eq. (4.9)). Hence, one expects to see the solution

leave the found DL behaviour whenever the left over interactions (2.21) generates a term

in the equation of motion larger than, or of the order of, any of those three terms. For a

generic interaction (2.21) this happens below the radius Rk1,k3,k4 defined by

Rk1,k3,k4 = RV (RSm)
1
5
+ 1

5

3k1+4k4
k1+2k3−6 . (4.19)

Again we see that this scale is always parametrically smaller than the Vainshtein Radius,

whenever k1 + 2k3 − 6 is stricly positive. When this later condition is not fulfilled, it is

also easy to see that the neglected interactions are then always subdominant with respect

to the cubic self interaction retained by the DL for R ≤ RV . Hence, for the scaling (3.40),

we expect as well the DL to give the leading behaviour of the solution of the full nonlinear

system (if it exists) for distances below the Vainshtein radius and above the largest of the

scales Rk1,k3,k4 which is simply RV × a.

4.2 Solving the decoupling limit equation of motion

4.2.1 Behaviour and boundary conditions at infinity

As we have just demonstrated, in the decoupling limit, one is left with the single nonlinear

differential equation (4.11) to be solved with appropriate boundary conditions. Note, that

in the simple case of BD and AGS potentials (respectively potentials (2.4) and (2.5)),

equation (4.11) (taking then the simpler form (4.13)) can be put in the well studied form

(with obvious notation), encompassing in particular the six Painlevé transcendents

ẅ = F (w, ξ)ẇ2 +G(w, ξ)ẇ +H(w, ξ).

However, one can easily check that the functions F , G, and H above are such that the

movable singularities of this equation are not only polar and even in this case solutions are

not known analytically, hence one has to use a numerical integration in order to solve the

equation of motion (4.11).

This equation being of second order, we have to specify two initial conditions, w(ξi)

and ẇ(ξi) at some point ξi to start numerical integration from there. In our case, however,

it is natural to start the integration from infinity, since we know the asymptotic behaviour

of w there. Indeed, at infinity, i.e. large ξ (or large R) regime, we are looking for a

solution of equation (4.11) which has the asymptotic behaviour given by dropping all the

nonlinearities. Hence it should behave at large ξ as

w(ξ) ∼ w∞(ξ), (4.20)

where w∞(ξ) is defined by

w∞(ξ) ≡ 2

3ξ3
. (4.21)
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This behaviour can then be used to integrate inward the equation of motion starting from

the initial conditions

w(ξi) = w∞(ξi), (4.22)

ẇ(ξi) = ẇ∞(ξi).

Taking a sufficiently large ξi, ξi ≫ 1, we may hope that a solution we obtain by numerical

integration will be close to the true solution (if it exists) of eq. (4.11) with the asymptotic

behaviour w(ξ) → w∞(ξ) as ξ → ∞.

Things are slightly simpler in the case of equation (4.13) corresponding to the BD and

AGS potentials (2.4) and (2.5). Indeed, in this case, the change of variable

Ξ∞ = ξ−3, (4.23)

W∞ = [w(ξ)]3/2 , (4.24)

puts the differential equation (4.13) in the form

sW ′′
∞ − W

1/3
∞

4Ξ
8/3
∞

+
1

6Ξ
5/3
∞ W

1/3
∞

= 0. (4.25)

In this form, the first term in the left hand side above stands for all the term quadratic

in w in equation (4.11) (i.e the terms in Q), the second term represent the term linear in

w and the last term encodes the source. The boundary conditions (4.20)–(4.21) translate

into the Cauchy initial values at 0

W∞(0) = 0

W ′
∞(0) = 0, (4.26)

while the asymptotic behaviour at Ξ∞ → 0 is obtained now by dropping the second deriva-

tive of W∞ in the above equation (4.25) and reads

W∞ ∼
(

2

3
Ξ∞

)3/2

.

In this simpler case, one sees clearly a crucial property of our problem, that holds also in

the most general case (4.11), namely the Cauchy problem (4.25)–(4.26) (or (4.11) together

with the asymptotic behaviour (4.20)) is a singular Cauchy problem, since the differential

operator of equation (4.25) is obviously singular in (W∞,Ξ∞) = (0, 0). As a result, one

can not use standard theorems on Cauchy problem to conclude anything on the existence

of a solution. Before turning to discuss solutions of our equation (4.11), we first discuss in

the following subsection a simple linear differential equation with a similar singular Cauchy

problem to illustrate some crucial properties also found in our solving of equation (4.11).

4.2.2 A simple singular Cauchy problem

Consider the following second-order differential equations:

y′′(x) + y(x) =
1

x
, (4.27)
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− y′′(x) + y(x) =
1

x
. (4.28)

These equations are singular at infinity similarly to eq. (4.11). The term y(x) and 1/x

correspond respectively to the term linear in w and the source term 1/ξ3, while the second

derivative of y can be related to the nonlinear differential operator Q. Aside from the fact

the differential operator of equation (4.27) and (4.28) is linear, those equation have the

same structure as equation (4.11). The solution of (4.27) is given by

y1(x) = C̄1 cos(x) + C̄2 sin(x) + Ci(x) sin(x) − Si(x) cos(x), (4.29)

and the solution of (4.28) is

y2(x) = C̄1e
x + C̄2e

−x − 1

2

(

exEi(−x) − e−xEi(x)
)

. (4.30)

In eq. (4.29) and (4.30), C̄1 and C̄2 are arbitrary constants, and Si(x), Ci(x) and Ei(x) are

sine integral, cosine integral and exponential integral functions correspondingly, given by

Si(x) =

∫ x

0

sin t

t
dt, Ci(x) = −

∫ ∞

x

cos t

t
dt, Ei(x) = −

∫ ∞

−x

exp(−t)
t

dt.

Now let us find solution(s) of (4.27) and (4.28) such that,

y1,2(x) →
1

x
, when x→ ∞. (4.31)

This correspond, mutatis mutandis, to the asymptotic at infinity, eq. (4.21). There is a

unique solution of (4.27) with the asymptotic (4.31),

y1(x) =
π

2
cos(x) + Ci(x) sin(x) − Si(x) cos(x), (4.32)

while for the equation (4.28) the asymptotic behaviour (4.31) does not fix uniquely the

solution,

y2(x) = C̄2e
−x − 1

2

(

exEi(−x) − e−xEi(x)
)

. (4.33)

i.e. one has the freedom to choose at will the integration constant C̄2. Solution (4.32) has

the following asymptotic expansion

y1(x) =
1

x
− 2

x3
+

24

x5
− 720

x7
+O

(

1

x9

)

,

while looking for a power serie expansion of solution (4.33), we find

y2(x) =
1

x
+

2

x3
+

24

x5
+

720

x7
+O

(

1

x9

)

.

Those series expansions are in fact divergent, and hence only give at best asymptotic

expansions of the solution, however we notice that the last one misses the existence of

the homogeneous mode C̄2e
−x. One can nonetheless easily see that the solutions (4.32)

and (4.33) are in fact finite and they give the correct asymptotic (4.31) at the infinity.
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The toy examples (4.27) and (4.28) show that for singular equations, the asymptotic

behaviour at infinity can be enough to fix uniquely the solution (and hence the singular

Cauchy problem is well-posed), this is the case for example of eq. (4.27); while in other

cases, such as that of eq. (4.28), there exist a family of solutions with the same asymptotic

behaviour, which can be missed by looking for the solution by a power serie expansion. The

properties summarized in this last paragraph are exactly recovered for our equation (4.11),

as we now see, beginning by discussing the simplest case of BD and AGS potentials.

4.2.3 Solutions for the BD and AGS potentials outside the source

In the case of the BD and AGS potentials (of eq. (2.4) and (2.5) respectively), the nonlinear

differential equation to solve takes the simple form (4.13). In those cases, it is easy to find

a power serie expansion of the solution around ξ = +∞ in the form

w(ξ) =

∞
∑

n=0

wn

ξ3+5n
. (4.34)

The first non trivial six wn coefficients, are given by

w(ξ) =
2

3ξ3
+ s

4

3ξ8
+

1024

27ξ13
+ s

712960

243 ξ18
+

104910848

243 ξ23
+ s

225030664192

2187 ξ28
+ · · · (4.35)

Note that the first two terms of this series match those given in equation (3.33), and in fact

this expansion is just the continuation of the one given in this equation. One can check

numerically that this power series is in fact divergent. However we found it useful for the

purpose of numerical integration to use this expansion as an asymptotic expansion of the

solutions. Indeed it provides a better approximation of the solution than keeping only the

leading order (4.22), provided that we truncate the expansion at the appropriate order.13

In both cases of BD and AGS potentials, we were able to integrate numerically inwards

equation (4.13) and obtain non singular solutions all the way to small radii. Our results

are shown in figures 1 and 3.

These numerical solutions exhibit different behaviours at small ξ which can be under-

stood as we now explain. First, if, following Vainshtein, we assume that we can drop the

term linear in w in equation (4.13), the leading behaviour should be given by a solution of

the equation

2Q(w) =
1

ξ3
,

13I.e., as usual with asymptotic expansions, for any given ξi from which we want to integrate inwards,

there is an order n that minimizes the n-th term wn/ξ3+5n of the series (4.34), and we found it helpful to

use the formal series truncated at this order n(ξ), i.e. to replace the initial conditions (4.22) by

w(ξi) =

n(ξi)
X

k=0

wk

ξ3+5k
,

ẇ(ξi) =
d

dξ

0

@

n(ξi)
X

k=0

wk

ξ3+5k

1

A . (4.36)
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Figure 1. Solution for w in the case of the BD potential. The numerical solution is shown by solid

thick (blue) line. For distances much larger than the Vainshtein radius, ξ ≫ 1, the solution is well

approximated by the asymptotic (4.21), shown by dashed thin (black) line. Close to the source,

ξ ≪ 1, the numerical solution approaches the Q-scaling asymptotic, eq. (4.39), shown by dotted

thin (black) line.

namely the same equation as equation (3.35). An assumed power law behaviour leads then

to the Vainshtein scaling at small ξ, as (see eq. (3.39))

w ∼ wV ∝ 1√
ξ
. (4.37)

Whether such a scaling leads to a real or an imaginary solution depends on the potential.

For the AGS potential it leads to a real leading behaviour w ∼ wV =
√

8
9 ξ . An expansion

of the solution around this Vainshtein scaling can then be obtained in the following form

w(ξ) =

√

8

9 ξ
+B0 ξ

− 5
4
+ 3

√
5

4 − 3
(

−5 +
√

5
)

8
√

2
(

−4 +
√

5
)B2

0 ξ
−2+ 3

√
5

2 +
6ξ2

31
+ · · · (4.38)

This expansion can be seen to match correctly the (only - see thereafter) solution of the

AGS case that has the small ξ Vainshtein asymptotics, provided the constant B0 is fixed

to some specific value. It can be understood as follows. The leading term is of course the

Vainshtein scaling. The next term ∝ ξ
1
4(−5+3

√
5) is a zero mode of the linearized Q around

the leading behaviour. The rest of the series is then obtained, as usual, order by order in ξ.

For the BD potential, however, the Vainshtein scaling at small ξ leads to an imaginary

solution, which is not acceptable. In the BD case, rather than the Vainshtein scaling,

we found that there exists a real non singular numerical solution all the way to small ξ
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which interpolates between the large distance behaviour w ∼ 1/ξ3 for ξ ≫ 1 and the small

distance behaviour w ∼ 1/ξ2 for ξ ≪ 1 (see figure 1). Notice that this solution is perfectly

regular around the Vainshtein radius ξV = 1. The found new scaling at small ξ, namely

w ∼ 1/ξ2, (4.39)

and named in the following Q-scaling, is in fact obtained from a zero mode of the operator

Q. Indeed one can check that the equation Q(w) = 0 has the exact solution14

wQ(ξ) =

(

K0

ξ3
+K1

)
2
3

=
A0

ξ2
+B0 ξ + O

(

ξ4
)

,

where K0 and K1 are two arbitrary constants and A0 = K
2/3
0 , B0 = (2K1)/(3K

1/3
0 ) are

the first two coefficients of the expansion of the zero mode around ξ = 0. A solution of

equation (4.13) can then be found in the form of the double expansion

w(ξ) =
A0

ξ2
+

∞
∑

n=1

n
∑

k=0

wn,k ξ
n(ln ξ)k (4.40)

where the coefficients wn,k are functions of A0, B0. For the BD and AGS potentials, the

first coefficients read:

w(ξ) =
A0

ξ2
+

3A0B0 − s ln ξ

3A0
ξ + s

3

8
ξ2

+
1 + s 6A0B0 − 54A0

2B2
0 − (2 − s 36A0B0) ln ξ − 6 ln2 ξ

216A3
0

ξ4 +O
(

ξ5
)

.

(4.41)

The values of the parameters A0, B0 can be fixed matching numerically the expansion at

small ξ with the large ξ asymptotic behaviour. In the case of the BD potential, we find

A0 ∼ 0.645 and B0 ∼ 0.208 and we find that the expansion fits very well the numerical

solution up to ξ ∼ 1 (the Vainshtein radius), as can be seen in figure 2. Expansions for

14This solution can be easily found using the new function and variables

ξ ≡ Ξ
1/3
0 ,

w(ξ) ≡

„

W0(Ξ0)

Ξ0

«2/3

,

which translates the differential equation (4.13) into the following nonlinear equation on W0(Ξ0)

s
d2W0(t)

dΞ2
0

−

W
1/3
0

4Ξ
2/3
0

+
1

6Ξ0W
1/3
0

= 0,

where Q is transformed into the first term on the left hand side.
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Figure 2. Plot of the numerical solution (solid black curve), and the series expansion (4.41) given

up to order ξ (dotted red curve) and up to order ξ13 (dashed blue curve). The expansion up to ξ13

approximates the numerical solution with a precision better that 99% in the range 0 6 ξ 6 0.95.

u(ξ) and v(ξ) can be found in the same way. They read

u(ξ) =
1

ξ
− A0

2
− ξ3

6A0
(3A0B0 − s ln ξ) − 3s ξ4

16
+O

(

ξ5
)

(4.42)

v(ξ) = −1

ξ
+ (D0 +

1

2
A0 ln ξ)

+
ξ3

54A0
(s+ 9A0B0 − s 3 ln ξ) + s

3ξ4

64
+O

(

ξ5
)

. (4.43)

In dimensionful units, and keeping only the dominant terms, the above equations (4.42)

and (4.43) read (the corresponding expression for µ has been given in equation (3.40))

λ =
RS

R
+ O(1) (4.44)

ν = −RS

R
+

1

2
A0(RSM)4/5 lnR+ O(1) (4.45)

Note that the leading terms at small R, λ = RS/R and ν = −RS/R, correspond to the

linearization of the Schwarzschild solution in General Relativity, and hence, even with our

new scaling, one recovers (in the decoupling limit) the Schwarzschild solution at distances

smaller than the Vainshtein radius, in agreement with the Vainshtein original idea that

nonlinearities can cure the vDVZ discontinuity. Notice however that this happens here

for a potential, the BD potential, for which the Vainshtein mechanism was believed not

to work because of the imaginary nature of the Vainshtein scaling at small ξ [12]. It is
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also interesting to notice that the first correction to the Newtonian potential arising from

equation (4.45) has a form similar to the one required by MOND [1].

Our numerical investigations of the solution in the BD case lead to the conclusion that

there is in this case a unique solution (shown in figure 1) with the right asymptotics (4.21).

This was confirmed by an analytic proof of this uniqueness (around ξ = +∞) provided

by J. Ecalle [28]. To conclude on the BD potential, let us further mention that in this

case, the numerical integration appears to be stable against small perturbations. Namely,

a slight change in the initial conditions at large ξi does not result in growing divergences

but only in small oscillations around the found unique solution. This can be understood

analytically by perturbing around the asymptotic solution (see appendix C).

Let us now turn to discuss the AGS case (potential (2.5), or s = +1). In this case,

the expansion (4.35) still holds, but in analogy with the example (4.28) we found in this

case infinitely many solutions with the same power serie expansion (4.35) at infinity. In

this case, indeed, we found that with the same asymptotics at infinity, different behaviours,

including the original Vainshtein scaling, were possible at small ξ. In fact, the most general

behaviour at small ξ, is still of the form of the Q-scaling (4.39) with the asymptotic expan-

sion (4.40)–(4.41), but depending on the chosen solution at infinity, this behaviour can be

picked up at arbitrarily small ξ while there is an intermediate region at ξ smaller than one

where the solution follows the Vainshtein scaling (4.37) (see figure 3). The Vainshtein scal-

ing then appears as the limiting case of the family of solution having the right asymptotics

as infinity (4.21), and so can be obtained in the AGS case. From a practical point of view,

numerical integration in the AGS case is quite difficult, due to numerical instabilities which

appear for distances larger that the Vainshtein radius ξ = 1. Indeed, any small departure

from the solution sources exponentially growing modes and Runge-Kutta type of integra-

tions reach singularities quickly. In this context, we found very useful, while integrating

from large ξi towards ξ = 0, to use the asymptotic expansion (4.34), truncated at the order

appropriate to ξi. We were also able to confirm our numerical results by solving equa-

tion (4.11) using a relaxation method, which is more robust under numerical instabilities.

Again, our numerical investigations were confirmed by mathematical proofs of the existence

(around ξ = +∞) of infinitely many solutions with asymptotics (4.21) [28, 29]. In fact, one

can also show that any two solutions of (4.11) having the same asymptotics (4.21) differ (at

dominant order) at large ξ by a quantity given by a constant times ξ3/2 exp
(

−k 3/5 ξ5/2
)

where k is an integer [28]. Finally, one can also analyse the problem by perturbation theory

around the large ξ behaviour (4.21). This is done in appendix C and we find that there are

both a growing and a decaying mode. The growing mode is responsible for the numerical

instability pointed out above and should be discarded in the true solution; the subdomi-

nant decaying mode, similar to the decreasing exponential found for equation (4.28), can

be freely specified while keeping the asymptotic behaviour (4.21).
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Figure 3. Plot of the numerical solutions for w in the case of the AGS potential, starting from

ξi = 2.5. For ξ ≫ 1 all the solutions approach the asymptotic (4.21), shown by dashed thin (black)

line. At small distances, ξ ≪ 1 the solutions pick up different asymptotic regimes. The solid thick

(blue) line corresponds to the Vainshtein scaling w ∼ 1/
√
ξ. The dash-dotted thick (green) line

corresponds to a solution with the Q-scaling (4.39). The dashed thick (red) line corresponds to a

solution which first follows the Vainshtein scaling and then finally picks up the Q-scaling (4.39).

4.2.4 Solution for the BD and AGS potentials inside the source

Let’s now include a source. For simplicity, we consider a star of constant density, ρa, and

radius ξ⊙ (i.e. of radius R⊙ in physical units). We have

ρa =
3

ξ3⊙
,

leading to the equation for w inside the source

2Q(w) +
3

2
w =

1

ξ3⊙
.

Here too, two different types of solutions can be guessed. The first kind are solutions of

the form

w(ξ) =
A0

ξ2
+

∞
∑

n=1

wnξ
n (4.46)

corresponding again to a 1/ξ2 leading behaviour for small ξ. The second kind are solutions

of the form

w(ξ) =

∞
∑

n=0

w2nξ
2n = A0 + s

3A0ξ
3
⊙ − 2

20A0ξ3⊙
ξ2 + · · · (4.47)
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Figure 4. Plot of the numerical solution for w in the case of the BD potential in the presence

of a source of radius ξ⊙ = 0.01 (depicted above by a light blue area), starting from ξi = 6. The

blue thick line corresponds to the Q-scaling of eq. (4.46), which is picked up by the asymptotic

behaviour at infinity. Note that the solution is almost not affected by the presence of the source.

where the leading term is now w ∼ A0 (and s = −1 in the BD case, and s = +1 in the

AGS one).

Our numerical integration indicates that, the BD solution, which is fixed by the asymp-

totic condition at infinity (4.22), follows the w ∼ 1/ξ2 behaviour inside the star, as shown

in figure 4. In the AGS case, the situation is more subtle: generically (i.e. without fine

tuning), the non singular solutions also adopt such a 1/ξ2 leading behaviour; an example

of such a solution is presented in figure 5 (thick dash-dotted red curve). However, there is

a case for which the other scaling w ∼ A0 is possible. This case precisely corresponds to

the Vainshtein solution outside of the source, as shown in figure 5 (thick blue curve).

Note that for the Vainshtein and Q-scaling at small R, and in the absence of a source,

the Jacobian (3.8) is going asymptotically to zero. This is not true for the scaling (4.47).

Moreover, only this scaling leads to a finite Ricci scalar of the physical metric gµν at R = 0.

Hence, this might provide a way to select a physical solution in the full nonlinear theory.

Discussion of these interesting issues is however left for a future work [30], since it involves

keeping track of nonlinear terms in the equations beyond those appearing in the DL.

4.2.5 Solution in the most general case

In the most general case of equation (4.11) with arbitrary α and β, a solution with a

Vainshtein scaling at small ξ can easily be found. It is obtained by a power law ansatz and
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Figure 5. Plot of the numerical solutions for w in the case of the AGS potential in the presence

of a source of radius ξ⊙ = 0.01 (depicted above by a light blue area), starting from ξi = 3.5. The

solid thick (blue) line corresponds to the solution having the behaviour eq. (4.47) inside the source.

The thick dash-dotted (red) line illustrates the Q-scaling, eq. (4.46), inside the source.

dropping the term linear in w in eq. (4.11) and reads

wV (ξ) =

[

16

3(25α + 13β)

]1/2

ξ−1/2, as ξ → 0.

This solution is real iff

25α+ 13β > 0.

In analogy with the discussion of the previous subsection, one can look for another scaling

where the dominant term (at small ξ) is given by a zero mode of the operator Q appearing

in equation (4.11). Zero modes in the form of power law,

wQ = Aξp, (4.48)

can be found, where p is given by

p± =
−3α− 2β ±

√

−β2 − 2αβ

α+ β
, for α+ β 6= 0, (4.49)

where the plus sign in the right hand side corresponds to the power p+, and the minus

sign to the power p−. Note that for α+ β = 0, e.g. the BD and AGS potentials studied in

subsection 4.2.3 and 4.2.4, the Q-scaling p = −2 can be found from (4.49) taking the limit
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Figure 6. The diagram of possible scalings for solutions of eq. (4.11) at ξ → 0 in the plane of

parameters α and β. The whole parameter space (excluding the origin) can be reduced to the circle

of unit radius, with the help of an appropriate rescaling (see the text).

α → −β. One can check also that, in order to describe the dominant behaviour at small

ξ, any particular root, p+ or p−, should satisfy an additional criterion, namely,

p < −1

2
,

otherwise with this scaling the nonlinear terms in eq. (4.11) are not dominant.

The various possibilities for the different power law scaling as ξ → 0 are summarized

in figure 6 in the (α, β) plane. Roughly speaking eq. (4.11) possesses four different regimes

at ξ → 0 with:

• only Vainshtein scaling;

• only Q-scaling;

• both Vainshtein and Q-scalings;

• no power law scaling.

There are three boundary lines, where interesting transitions from one type to another can

happen:

• β = 0;

• α = −13β/25;

• α = −β/2.
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Figure 7. The values of the possible power law scaling exponents of the solutions of eq. (4.10)

at small ξ as a function of parameters α and β. The circle in the figure 6 is mapped to the

horizontal segment. The Vainshtein scaling is shown by dashed horizontal (red) line, while the

Q-scalings are shown by solid (green) lines. The scalings which are found to smoothly continue to

the asymptotic (4.21) at large ξ are shown by thick lines. The scalings at ξ → 0 which do not give

the required asymptotic at large ξ are shown by thin lines.

Note, that with the help of the rescaling ξ → C̄ξ and w → C̄−3w, with C̄ =
(

α2 + β2
)1/10

,

eq. (4.11) can be brought to the same form where the coefficients α and β now verify

α2 + β2 = 1, and hence one can restrict the study of the different cases in the (α, β) plane

of figure 6 to those where α and β lie on the circle of unit radius. This circle is mapped

to the horizontal segment in figure 7 which shows together with the possible power scaling

(the values of the Vainshtein and Q-scaling power scalings are plotted on the vertical axis),

results of the numerical integrations of equation (4.11) indicating which of the scalings are

in fact realized in the solutions having the right large ξ asymptotics w∞ given by (4.21).

Depending on the sign of β, this asymptotics does or does not fix a unique behaviour at

small ξ. Indeed, for β > 0 small variations of initial conditions at large ξ does not affect

the solution at small ξ, similar to the case we have already studied, the BD potential. This

signals about the uniqueness of the solution for eq. (4.11) when the asymptotic behaviour

is fixed by (4.21). On the contrary, for β < 0, the asymptotic behaviour (4.21) does not fix

uniquely the solution, and we find infinitely many different solutions at small ξ with the

same behaviour at large ξ.

Starting from the point (α, β) = (−1, 0), and moving counter-counter-clock-wise along

the unit circle of figure 6, i.e. from the left and along the horizontal segment of figure 7, let

us now describe with more details the successive cases of interest together with the results

of our numerical integrations.

• β = 0, α < 0.

This point is somewhat special: no Vainshtein scaling is possible and the two Q-
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scalings are equal and coincide with the asymptotic solution at infinity,

wQ(ξ) ∝ ξ−3, ξ → 0.

In fact, in this case the asymptotic form eq. (4.21) satisfies eq. (4.11) exactly for any

ξ > 0,

w(ξ) =
2

3ξ3
.

This can be easily understood recalling that whenever β vanishes, the covariant form

of Q(α,β) can be read off in equation (2.25) to contain only � acting on φ̃, and hence,

in vacuum, a solution of �φ̃ = 0 is a solution everywhere.15

• β > 0, −∞ < α ≤ −β/2.
The solution at ξ → 0, with the correct large distance asymptotics (4.21), is always

given by the Q-scaling with p−, although in some parts of this region of parameters

we could expect the second Q-scaling and/or Vainshtein scaling. This region contains

the BD potential, which we have already studied in detail.

• β > 0, −β/2 < α < +∞.

The solution is always singular in this region, the integration from large ξ always

breaks down at some finite distance ξ > 0. One could have expected the existence

of a regular solution with the Vainshtein asymptotic scaling but it appears that this

scaling does not give the required asymptotic behaviour at infinity.

• β = 0, α > 0.

This case is similar to the case, β = 0, α < 0. An exact solution for ξ > 0 is given

by an analytic expression,

w(ξ) =
2

3ξ3
.

• β < 0, −13β/25 < α < +∞.

For β < 0 the asymptotic condition at infinity (4.21) does not fix uniquely the solu-

tion, as in the case of AGS potential, which is included in this region of parameters.

Thus tuning the initial conditions at large ξ we are able to obtain at small ξ either the

Q-scaling with p+, 16 or the Vainshtein scaling or a singular solution. It is remarkable

that the other Q-scaling cannot be obtained by the tuning of the initial conditions

even though the scaling with p− would be a dominant scaling for −β < α < +∞.

Here again it is found, as in the AGS case, that the Vainshtein scaling appears as a

limiting regime of a family of solutions which all have the Q-scaling as their inner-

most scaling, but can behave at some intermediate range of ξ following the Vainshtein

scaling (see figure 3).

15We leave for a future publication the discussion of the inclusion of a source.
16Note that this is a whole family of solutions, since by tuning the initial conditions at large ξ we can get

different factor A in (4.48) at small ξ.

– 39 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
8

• β < 0, −β/2 ≤ α ≤ −13β/25.

The only possible scaling here, as confirmed by numerical integration,17 is a family

of the Q-scaling with p+ and different A in (4.48). Of course, changes in the initial

conditions also lead to singular solutions as well.

• β < 0, −∞ < α < −β/2.
There is no scaling possible for small ξ, and indeed, the numerical integration gives

only singular solutions in this region.

When it is possible to find a scaling for small ξ (either of Vainshtein or of Q type), a full

solution can be obtained as a power law expansion in ξ, similar to the ones obtained in

the specific cases of AGS and BD potentials (eq. (4.38) and (4.41)). Note that for both

Vainshtein and Q-scalings, it is always possible to add to the leading behaviour a zero

mode of the linearized Q around the leading term, introducing a free constant (denoted

B0 in eq. (4.38) and (4.41)) which should be fixed by matching the small ξ expansion with

the asymptotic behaviour (4.21).

To conclude, we have found that for the range of parameters β < 0, α < −β/2 and

β > 0, α > −β/2, regular solution(s) with the right large distance asymptotics (4.21) exist.

For positive β, and fixed α only one such solution exists and it has the Q-scaling at small

ξ. For negative β, and fixed α, a whole family of such solutions exist, which have the

Q-scaling at small ξ, while the Vainshtein scaling appears as a limiting case of this family

of solutions. As such, and in contrast to the Q-scaling, it never appears as the only possible

scaling realized at small ξ. In the other range of parameters only singular solution(s) can

be found if the asymptotic behaviour (4.21) is fixed.

5 Discussion and conclusions

In this paper we have investigated static spherically symmetric solutions of nonlinear mas-

sive gravities in the so-called decoupling limit (DL). After having first identified how to

obtain this limit with the ansätze we used and which are appropriate for studying static

spherical symmetry, we have solved the system of equations left over in the DL and ob-

tained non singular solutions featuring a Vainshtein-like recovery of solutions of General

Relativity (GR). This first shows that the singularities found to arise solving the full non-

linear system of equations [12] are not present in the DL, despite the fact those singularities

are commonly thought to be due to a negative energy mode also seen in this limit and asso-

ciated with the kind of instability first discussed by Boulware and Deser [11]. To us, this is

not necessarily a surprise, since there is in fact no clear clash between having (static), non

singular, spherically symmetric solutions and a ghost (coupled to positive energy modes)

in a model. In fact, appendix D gives a toy example with such a property. One should

of course worry about the possible instabilities (in time) of the static solutions, but this

is another story and has a priori nothing to do with the singularities discussed in [12].

Moreover, we also found that the scaling at distances smaller than the Vainshtein radius,

17the border case with p+ = p− is included.
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first conjectured by Vainshtein [10], was only a limiting case in an infinite family of non

singular solutions each showing a Vainshtein recovery of GR solutions below the Vainshtein

radius but a different (but common) scaling at small distances. This new scaling was shown

to be associated with zero modes of the nonlinearities left over in the DL. Interestingly,

this family of solution all have the same asymptotic power law expansions but differ at

small distances which means in particular that the asymptotic expansion is not enough to

fix uniquely the solution at small distance. We also noticed, including sources, that the

Vainshtein scaling gives a better behaviour at the origin, but it is hard to conclude on this

matter without studying the nonlinearities not included in the DL and we plan to come

back on this issue in a future work [30]. Last, we have also shown that potentials that

were thought not to admit a Vainshtein-like recovery of GR solutions, because the conjec-

tured Vainshtein scaling at small distances would have lead to imaginary solutions, could

in fact accommodate such a recovery via a different scaling at small distances. This scaling

is the same as the one mentioned above associated with zero modes of the nonlinearities

appearing in the DL.

An intriguing question is whether the properties found in the DL, and summarized

above, also hold in the full nonlinear system. This requires in particular solving numerically

the full nonlinear system, which is not an easy task given the numerical instabilities we

already noticed in the DL. We will carry a thorough analysis of the full nonlinear system,

stressing in particular the rôle of the neglected interactions, in a future publication [30]. At

this stage, let us just say that the findings of this work opens the possibility that important

properties of the full nonlinear system could have been overlooked. On the other hand, if

indeed this is not the case, it shows that the DL is not capturing all the interesting physics

of the spherically symmetric solutions. It is also important to answer this question for the

sake of a better understanding of other models, such as the DGP model where the role of

nonlinearities in the equivalent DL and beyond are not fully understood. e.g. there are no

known non singular exact solution in the bulk and on the brane describing the equivalent

of a Schwarzschild Black Hole in DGP theory and results on the Vainshtein mechanism in

DGP gravity are all obtained using some approximation scheme [14, 15, 21].
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A Equations of motion of XA

We first derive the form of the variation δfµν(x) of fµν(x), defined as in equation (2.11),

when XA varies as XA(x) → XA(x) + δXA(x). We have, replacing XA(x) by XA(x) +
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δXA(x) in the definition of fµν(x), that δfµν(x) is given by

δfµν(x) = ∂µδX
A∂νX

BfAB(X)

+∂µX
A∂νδX

BfAB(X)

+∂µX
A∂νX

BδXC∂CfAB(X). (A.1)

Using then that

δC
A = ∂Ax

σ∂σX
C ,

where xσ(X) stands for the inverse mapping of XA(x), we find that

∂νX
BfAB(X(x)) = ∂Ax

σfσν(x),

and

∂CfAB(X) = ∂Cx
σ∂σX

D∂DfAB(X).

Inserting those expression in (A.1), we find that the latter reads

δfµν = ∂µδX
A∂Ax

σfσν(x)

+∂νδX
B∂Bx

σfµσ(x)

+δXC∂Cx
σ∂σX

D∂µX
A∂νX

B∂DfAB(X).

We then define δxµ(x) as in (2.13), and rewrite δfµν as

δfµν = ∂µδx
σfσν + ∂νδx

σfµσ + δxσ∂σfµν

−δXCfEF∂νX
F
(

∂B∂Cx
σ∂µX

B∂σX
E + ∂Cx

σ∂σ∂µX
E
)

−δXCfEF∂µX
E
(

∂A∂Cx
σ∂νX

A∂σX
F + ∂Cx

σ∂σ∂νX
F
)

(A.2)

If one differentiates with respect to xµ (respectively xν) the quantity

δE
C = ∂Cx

σ∂σX
E ,

we see that the last terms in the last two lines of the equation (A.2) vanish, and hence

we get that δfµν is given by the expression (2.12), that is to say the Lie derivative of fµν

along the expression δxµ considered as a vector field on the space-time manifold. In fact it

is easy to see that δxµ transforms as a vector field under a coordinate change x′µ = x′µ(x).

Indeed, under such a coordinate change XA and δXA are scalar quantities, and hence we

get that

δx′µ(x′) = δxσ(x(x′))
∂x′µ

∂xσ
,

using the fact that x′µ(X ′(x′)) which appears in the definition of δx′µ(x′) can also be

rewritten as

x′µ(X ′(x′)) = x′µ(x(X(x(x′)))).

We now use the fact that the interaction term between the two metrics, appearing in the

action Sint is a scalar under reparametrization. Hence, under a coordinate change of the

form xµ → xµ + ξµ, one has that
(

δ

δfµν(x)
V(a)(f, g)

)

Lξfµν +

(

δ

δgµν(x)
V(a)(f, g)

)

Lξgµν
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is a total derivative, so its integral over space-time vanishes (provided we consider asymp-

totically vanishing ξ fields). Using then that

Lξgµν = ∇µξν + ∇µξν

and the definition of the energy momentum tensor (2.9), we obtain that under a

reparametrization generated by the infinitesimal vector field ξµ, one has

∫

d4x
√−gξµ∇νT

µν
g = −1

8
m2M2

P

∫

d4x

(

δ

δfµν(x)
V(a)(f, g)

)

Lξfµν .

Applying this formula with ξµ = δxµ defined above, we get the expression (2.14).

B Quadratic part of the equations of motion in the λ, µ, ν gauge

We find for G
(Q)
tt and G

(Q)
RR

G
(Q)
tt (ν, λ) = − λ2

2R2
+
λν

R2
− λλ′

R
+
νλ′

R
,

G
(Q)
RR(ν, λ) = − λ2

2R2
,

while the quantities Qtt, QRR and Qb are depending on the choice of interaction term

Sint[f, g] in action (2.3). e.g. for the two interaction terms (2.4) and (2.5), they read

respectively

Q
(2)
tt (ν, λ, µ) =

3µ2

2
+ λµ− 9µν

4
+Rµµ′ − R2µ′2

8
− 3λν

4
− 3Rνµ′

4

Q
(3)
tt (ν, λ, µ) =

λ2

4
− λν

4
+
Rλµ′

2
+
R2µ′2

8
− 3µν

4
− Rνµ′

4

Q
(2)
RR(ν, λ, µ) =

3λµ

2
− 3µν

4
+
Rµµ′

2
+

3λν

4
+
Rνµ′

4

Q
(3)
RR(ν, λ, µ) = −3µ2

2
+
λµ

2
+
µν

4
− Rµµ′

2
+
λν

4
− Rνµ′

4
− ν2

4

Q
(2)
b (ν, λ, µ) =

µ′2

4
+
µµ′′

2
+

2µµ′

R
+
νµ′′

4
+
µλ′

2R
+
µ′λ

2R

+
νλ′

4R
+
νµ′

R
− µν ′

R
+
νν ′

R
+

3λµ

2R2
+

3λν

2R2

Q
(3)
b (ν, λ, µ) = −µ

′2

4
− µµ′′

2
− 2µµ′

R
− νµ′′

4
− µλ′

2R
+
µ′λ

2R

−νµ
′

R
− νν ′

4R
− µ′ν ′

2
− νλ′

4R
− λν ′

2R
+

λ2

2R2
− λν

R2

As we now show, in full generality Q(µ) depends only on two parameters, α and β, leading

to the expression of eq. (3.30). We start from the general expression for the interaction

term (2.6)

Sint = −1

8
m2M2

P

∫

d4x V(g, f) = −1

8
m2M2

P

∫

d4x
√−g V (g−1f).
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The scalar V (g−1f) depending only on four invariants made out of the rank two tensor

Mµ
ν ≡ gµσfσν (or using a matrix notation M ≡ g−1f), we choose here those invariants ∆i

to be given by

∆i ≡ tr
[

(M − 1l)i
]

, i = 1, 2, 3, 4 .

Thus, one can write

V (g−1f) = V (∆i).

The stress-energy tensor (2.9) then reads

T g
µν = −M

2
Pm

2

4

[

−1

2
V gµν +

4
∑

i=1

δ∆i

δgµν

∂V

∂∆i

]

where δ∆i

δg−1 = (M − 1l)i f , using again a matrix notation. We can restrict now the metrics

to be of the spherically symmetric form (3.3). Since we are interested only in the terms

quadratic in µ, we can further specify our study to the case for which λ = ν = 0, and

expand the stress-energy tensor to the second order in µ, which requires to expand the

potential V to third order in µ. This can be done easily noticing that ∆i = O(µi), leading

to the expansion:

V (∆i) = a1 + a2∆1 + a3∆
2
1 + a4∆2 + a5∆

3
1 + a6∆1∆2 + a7∆3 + O(µ4).

With this expansion, the Bianchi identity (3.14) reads

1

M2
Pm

2

1

R
∇µT g

µR = Q(α,β)(µ) − Ω

(

µ′

2R
+
µ′′

8

)

− 3

80
Ω Rµ′µ′′

= 0 (B.1)

with Q(α,β)(µ) defined as in eq. (3.30), and

Ω = −a2 − 4a3 − 4a4 ,

α = − 1

24

(

a2 + 4a3 + 16a4 − 48a5 + 24a7

)

,

β = − 1

40

(

− 7a2 − 68a3 + 88a4 − 80a6 − 120a7

)

.

The last step is to impose the Pauli-Fierz form (2.1) for the mass term, which fixes the

terms linear in µ in the right hand side of the first line of eq. (B.1) to be zero, i.e. Ω = 0.

Identifying then the remaining quadratic term Q(α,β)(µ) in (B.1) with the quadratic term

Q(µ0) in eq. (3.27) leads eventually to the general expression of eq. (3.30) for the quadratic

term in µ in the Bianchi identity. Hence, as said in the main body of the text, it is here

explicitly seen that the fact no term linear in µ appears in the Bianchi identity, a crucial

property for what concerns the scalings appearing in the Vainshtein mechanism, is due to

the peculiar tensorial structure of the Pauli-Fierz mass term.
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C Expansion around ξ = +∞

Here we study with some details solutions of eq. (4.11) for general α and β, expanding

around the leading behaviour (4.21). It is convenient to factorize the asymptotic form of

w given by (4.21) and further use the following change of parametrization

w(ξ) =
2

3 ξ3
[

1 − ξ3 G (ζ)
]

ξ =

(

5
√

2|β|
3

ζ

)2/5

.

The asymptotic behaviour, (4.21) w ∼ w∞ = 2/(3ξ3), translates into

ξ3 G(ζ) → 0

ξ3 ζG′(ζ) → 0 (C.1)

when ζ → ∞. In terms of the new variables ζ and G, eq. (4.11) takes the form

S(ζ) =

[

1 −
(

9α+ 5β

4β

)

ξ3G(ζ) −
(

15

8

α+ β

β

)

ξ3ζG′(ζ)

]

G′′(ζ)

+

[

1 −
(

11

20

9α+ 5β

4β

)

ξ3G(ζ) −
(

33α + 29β

8β

)

ξ3ζG′(ζ)

]

G′(ζ)

ζ

+
|β|
β
G(ζ), (C.2)

with the source S(ζ) being given by

S(ζ) =
4|β|
ξ8

.

It is then clear that the limiting behaviour (C.1) for G allows to drop all the nonlinear

terms in G the equation (C.2) in the vicinity of infinity. This procedure leads to a Bessel

equation of 0-th order with a source:

G′′(ζ) +
G′(ζ)

ζ
+

|β|
β
G(ζ) = S(ζ). (C.3)

For β > 0, the general solution of (C.3) is given by

G(ζ) =
π

2
J0(ζ)

∫ ∞

ζ
Y0(t)S(t)tdt − π

2
Y0(ζ)

∫ ∞

ζ
J0(t) S(t)tdt +D1J0(ζ) +D2Y0(ζ) .

The only possible choice of integration constants D1 and D2 consistent with the con-

ditions (C.1), is that they both vanish, i.e. (D1,D2) = (0, 0). In this case, G has the

asymptotic behaviour G(ζ) = O(ζ−16/5) and the asymptotic conditions (C.1) fixes the so-

lution uniquely. This is similar to the example (4.27) discussed in the text and also allows

to understand qualitatively properties of the numerical integration of equation (4.11) for

positive β. Indeed, in this case, if one integrate numerically inwards (from large ξ), nu-

merical errors can source the homogeneous modes J0(ζ), Y0(ζ). However, the later are not
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growing out of control in agreement with the fact the numerical solution is found to be

stable under such small perturbations.

For β < 0, the general solution of (C.3) reads

G(ζ) = −K0(ζ)

∫ ζ

1
I0(t)S(t)tdt − I0(ζ)

∫ ∞

ζ
K0(t) S(t)tdt+D3K0(ζ) +D4I0(ζ) .

It this case, the conditions (C.1) only leads to the vanishing of D4, but the other integration

constant D3 remains free, since the homogeneous modeK0(ζ) decays fast enough at infinity.

Whatever the chosen D3, one finds a leading behaviour for G given by G(ζ) = O(ζ−16/5).

This is analogous to the example (4.28) discussed in the main body of the text. The exis-

tence of the growing mode I0(ζ) allows us to understand better the numerical instabilities

observed in the case of the AGS potential. It is indeed impossible not to source this grow-

ing mode numerically, and, after some point, this mode dominates the solution and the

integration reaches a singularity. As a consequence, one has to tune very carefully the

initial conditions of the numerical integration in order to avoid this explosion.

D An example of a system with coupled normal and ghost fields

Let us consider the following higher-order derivative action, S, for the scalar field φ

S =

∫

d4x

{

1

2
(�φ)2 + Tφ

}

. (D.1)

The above system can be described in terms of two fields, one positive energy (”normal”)

field, φc, and one negative energy (ghost) field, ψc. In terms of these new variable, S

now reads

S =

∫

d4x

{

1

2
φc�φc −

1

2
ψc�ψc −

1

4
(φc − ψc)

2 +
T√
2

(φc + ψc)

}

, (D.2)

where it is explicitly seen that the normal and ghost degrees of freedom are coupled via a

potential term. From (D.1) we find the equation of motion for φ,

� (�φ) = T. (D.3)

In the case of the point-like source, the full solution of (D.3) is,

φ(R) =
A1R

2
+
A0R

2

2
− B1

R
+B0. (D.4)

The first term in (D.4) “kills” the delta-function in the r.h.s. of (D.3). Note, that the

solution is smooth everywhere for R > 0. Moreover, the presence of the growing with R

terms in (D.4) is not dangerous, since these terms do not lead to a “bad” physical behaviour

at R → ∞. Indeed, the energy density, E(R), for the configuration of φ given by (D.4)

is [31]

E(R) =
1

2

(

A0 +
A1

R

)2

+
A1

R2

(

A1

2
+A0R+

B1

R2

)

. (D.5)

Thus, E(R) → (1/2)A2
0 as R→ ∞.
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